МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФГБОУ ВО «ДОНЕЦКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»
ПРЕДСТАВИТЕЛЬСТВО РАН НА ТЕРРИТОРИИ ДНР

ISSN 2664-7362 (PRINT) ISSN 2664-7370 (ONLINE)





#### МАТЕРИАЛЫ Х Международной научной конференции

## ДОНЕЦКИЕ ЧТЕНИЯ — 2025:

образование, наука, инновации, культура и вызовы современности



**TOM 1** 

Механико-математические, компьютерные науки, управление



#### Уважаемые коллеги! Дорогие друзья!

От имени Донецкого государственного университета, всего академического сообщества Донецкой Народной Республики приветствую наших друзей из различных регионов Российской Федерации и зарубежных стран, принимающих участие в традиционной, теперь уже X Международной научной конференции «Донецкие чтения — 2025: образование, наука, инновации, культура и вызовы современности».

Минуло десять лет с тех пор, как в нашем университете прошла первая конференция, которая за прошедшие годы приобрела широкую известность, стала авторитетным научным собранием, привлекла внимание большого числа ученых. Расширился спектр рассматриваемых научных направлений и вовлеченность в научные дискуссии известных ученых и специалистов-практиков, возросли актуальность и практическая значимость представляемых научных результатов.

Эпохальное событие — вхождение Донецкой Народной Республики в состав Российской Федерации — дало могучий толчок развитию и углублению наших научных исследований. Благодаря России мы получили достойное финансирование, новейшее оборудование, новые перспективные научные направления и наша общая цель — приложить все усилия к решению задач, которые ставит перед нами Родина.

2022–2031 годы объявлены Президентом России Владимиром Владимировичем Путиным как Десятилетие науки и технологий. Полагаю, что наша многопрофильная конференция вносит достойный вклад в решение задач, поставленных Президентом, в том числе и по привлечению талантливой молодёжи в науку!

На Конференции будут представлены 1 950 научных докладов в четырнадцати профильных секциях. Будут работать семьдесят восемь подсекций и одиннадцать круглых столов.

Труды конференции составляют десять томов в шестнадцати книгах общим объемом 5 980 страниц и будут размещены в электронной форме в наукометрической базе РИНЦ.

Приглашаю вас к обстоятельному разговору о способах и механизмах скорейшего внедрения прорывных научных разработок, с тем чтобы наши достижения способствовали укреплению суверенитета и безопасности нашей и дружественных стран, росту качества жизни россиян.

Желаю успехов всем участникам конференции, и всем нам – новых научных достижений во благо России!

С наилучшими пожеланиями, руководитель Представительства Российской академии наук на территории Донецкой Народной Республики, ректор Донецкого государственного университета, доктор физико-математических наук, профессор

Светлана Владимировна Беспалова

#### Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Донецкий государственный университет»

Представительство федерального государственного бюджетного учреждения «Российская академия наук» на территории Донецкой Народной Республики

X Международная научная конференция, посвященная 60-летию создания Донецкого научного центра

Материалы конференции

Донецкие чтения
– 2025:

#### **Tom 1**

МЕХАНИКО-МАТЕМАТИЧЕСКИЕ, КОМПЬЮТЕРНЫЕ НАУКИ, УПРАВЛЕНИЕ

образование, наука, инновации, культура и вызовы современности

> г. Донецк 5–7 ноября 2025 г.

Донецк Издательство ДонГУ 2025 ББК В1я431+В2я431+З97я431 УДК 51+ 531/534 +004 (043.2) Д672

#### Редакционная коллегия:

С.В. Беспалова (гл. ред.), А.В. Белый (зам. гл. ред.), М.В. Фоменко, И.А. Моисеенко, Вит.В. Волчков, А.С. Гольцев, Р.Н. Нескородев, Н.Ш. Пономаренко, Д.В. Шевцов, Н.Н. Щепин (отв. секр. секции).

Д672 Донецкие чтения — 2025: образование, наука, инновации, культура и вызовы современности: Материалы X Международной научной конференции, посвященной 60-летию создания Донецкого научного центра (Донецк, 5—7 ноября 2025 г.). — Том 1: Механико-математические, компьютерные науки, управление / под общей редакцией проф. С.В. Беспаловой. — Донецк: Изд-во ДонГУ, 2025. — 272 с.

Ответственность за содержание материалов, аутентичность цитат, правильность фактов и ссылок несут авторы.

В первый том материалов X Международной научной конференции «Донецкие чтения – 2025: образование, наука, инновации, культура и вызовы современности» вошли исследования по актуальным проблемам механикоматематических и компьютерных наук. Рассматриваются вопросы механики твердого тела и деформируемого твердого тела, математического анализа и дифференциальных уравнений, прикладной математики и информатики, теории систем управления и информационно-документационного обеспечения управления.

Освещенные в сборнике проблемы и направления их решения будут полезны научным работникам, преподавателям, студентам, аспирантам и докторантам, проводящим исследования в области механико-математических, и компьютерных наук.

ББК В1я431+В2я431+З97я431 УДК 51+ 531/534 +004 (043.2)

- © Коллектив авторов, 2025
- © Донецкий государственный университет, 2025

#### ПРОГРАММНЫЙ КОМИТЕТ КОНФЕРЕНЦИИ

#### Председатель:

*Беспалова С.В.*, д-р физ.-мат. наук, профессор, ректор Донецкого государственного университета (г. Донецк).

#### Заместители председателя:

Бабурин С.Н., д-р юрид. наук, профессор, президент Ассоциации юридических вузов, научный руководитель Центра интеграционных и цивилизационных исследований Института государства и права РАН, почетный профессор Донецкого государственного университета (г. Москва);

Зинченко Ю.П., д-р психол. наук, профессор, академик РАО, декан факультета психологии Московского государственного университета имени М.В. Ломоносова (г. Москва);

Кирпичников М.П., д-р биол. наук, профессор, академик РАН, декан биологического факультета Московского государственного университета имени М.В. Ломоносова (г. Москва);

Федянин А.А., д-р физ.-мат. наук, профессор, член-корр. РАН, проректор — начальник управления научной политики Московского государственного университета имени М.В. Ломоносова (г. Москва).

#### Члены программного комитета:

Андреев Д.А., д-р ист. наук, доцент, заместитель декана по научной работе исторического факультета Московского государственного университета имени М.В. Ломоносова (г. Москва).

*Аноприенко А.Я.*, канд. техн. наук, профессор, ректор Донецкого национального технического университета (г. Донецк).

*Белый А.В.*, канд. хим. наук, доцент, проректор Донецкого государственного университета (г. Донецк).

Вартанова Е.Л., д-р филол. наук, академик РАО, декан факультета журналистики Московского государственного университета имени М.В. Ломоносова (г. Москва).

*Варюхин В.Н.*, д-р физ.-мат. наук, профессор, член-корр. РАН, научный руководитель ФГБНУ «Физико-технический институт им. А.А. Галкина» (г. Донецк).

*Воронова О.Е.*, д-р филол. наук, профессор, профессор кафедры литературы и журналистики, руководитель Центра региональных проектов и межрегиональных связей Рязанского государственного университета имени С.А. Есенина (г. Рязань).

Глухов А.З., д-р биол. наук, профессор, главный научный сотрудник Донецкого ботанического сада, профессор кафедры ботаники и экологии Донецкого государственного университета (г. Донецк).

Головчан A.В., канд. физ.-мат. наук, доцент, и.о. директора ФГБНУ «Донецкий физико-технический институт им. A.A. Галкина» (г. Донецк).

Зайченко Н.М., д-р техн. наук, профессор, директор Донбасской национальной академии строительства и архитектуры — филиала ФГБОУ ВО «Национальный исследовательский Московский государственный строительный университет» (г. Макеевка, ДНР).

Игнатенко  $\Gamma$ .A., д-р мед. наук, профессор, академик РАН, ректор Донецкого государственного медицинского университета им. М. Горького (г. Донецк).

*Исаков В.Б.*, д-р юрид. наук, профессор, профессор НИУ «Высшая школа экономики» (г. Москва).

*Керимов А.Д.*, д-р юрид. наук, профессор, главный научный сотрудник Института государства и права Российской академии наук (г. Москва).

Кожухов И.Б., д-р физ.-мат. наук, профессор, профессор кафедры высшей математики НИУ «Московский институт электронной техники» (г. Москва).

*Липгарт А.А.*, д-р филол. наук, профессор, декан филологического факультета Московского государственного университета имени М.В. Ломоносова (г. Москва).

*Лубков А.В.*, д-р ист. наук, профессор, академик РАО, ректор Московского педагогического государственного университета (г. Москва).

*Мацкявичюс* Э.Г., директор Института медиа НИУ «Высшая школа экономики», директор института «Первая Академия медиа» Российского экономического университета имени Г.В. Плеханова (г. Москва).

*Минаев А.И.*, д-р ист. наук, доцент, профессор Рязанского государственного университета имени С. А. Есенина (г. Рязань).

*Некипелов А.Д.*, д-р экон. наук, профессор, академик РАН, директор Московской школы экономики Московского государственного университета имени М.В. Ломоносова (г. Москва).

*Нечаев В.Д.*, д-р полит. наук, доцент, ректор Севастопольского государственного университета (г. Севастополь).

Половян А.В., д-р экон. наук, доцент, директор ГБУ «Институт экономических исследований» (г. Донецк).

Приходько С.А., канд. биол. наук, ст. науч. сотр., директор ФГБНУ «Донецкий ботанический сад» (г. Донецк).

*Прутиков*  $\Gamma$ .B., д-р филол. наук, профессор Института медиа НИУ «Высшая школа экономики» (г. Москва).

*Рябичев В.Д.*, д-р техн. наук, профессор, ректор Луганского государственного университета имени Владимира Даля (г. Луганск).

Соболев В.И., д-р биол. наук, профессор кафедры здоровья и реабилитации Крымского федерального университета им. В.И. Вернадского (г. Ялта).

*Тедеев В.Б.*, канд. техн. наук, профессор, ректор Юго-Осетинского государственного университета имени А.А. Тибилова (г. Цхинвал).

*Тулупов В.В.*, д-р филол. наук, профессор, декан факультета журналистики Воронежского государственного университета (г. Воронеж).

Туранина Н.А., д-р филол. наук, профессор, зав. кафедрой библиотечноинформационной деятельности Белгородского государственного института искусств и культуры (г. Белгород).

 $Xомутова \ E.В.$ , канд. биол. наук, директор ФГБНУ «Институт физикоорганической химии и углехимии им. Л.М. Литвиненко» (г. Донецк).

### Механико-математические науки

### Механика твердого тела

УДК 531.38, 531.39

#### СПОСОБЫ СОСТАВЛЕНИЯ УРАВНЕНИЙ ДВИЖЕНИЯ МАШИН С ЭЛЕКТРОПРИВОДОМ

**Гордеев Г.Г.,** канд. физ.-мат. наук, доц. ФГБНУ «Институт прикладной математики и механики», г. Донецк, РФ gordeev g g@mail.ru

**Введение.** Любая машина состоит из механизма или их набора и привода, который предназначен для приведения в движение рабочего органа машины. Наряду сгидравлическим и пневматическим приводом наиболее распространенным является электропривод, состоящий из электродвигателя, передаточного устройства, преобразовательного устройства и устройства управления.

Любой механизм можно представить системой материальных тел с определенными связями, то есть набором кинематических пар. Для изучения работы машины с целью её расчёта, определения характеристик и управления необходимо составление её модели, состоящей в описании движения машины уравнениями, в частности, дифференциальными. Эта задача решается с помощью методов теоретической механики.

В данном докладе рассмотрены способы составления уравнений движения машин, в том числе и с электроприводом.

**Цель исследования** — указать способы составления уравнений движения механических и электромеханических систем твёрдых тел применительно к машинам с электроприводом.

**Основная часть.** Для составления уравнений движения механических систем, в частности, машин с электроприводом используется набор способов.

Первый способ состоит в разбиении системы на отдельные тела и записи их уравнений с помощью теорем о движении центра масс и об изменении момента количества движения (кинетического момента) механической системы. Второй способ состоит в применении уравнений Лагранжа 2-го рода. Третий способ состоит в рассмотрении механической части системы и электропривода, как электромеханической системы и в применении уравнений Лагранжа-Максвелла.

Механические свойства электродвигателя определяются его механической характеристикой, т.е. зависимостью вращательного момента

М от угловой скорости  $\omega$  вращения вала электродвигателя, эта зависимость может быть выражена аналитически [2]:

$$M = M(\omega)$$
,

или графически. Механическая характеристика зависит от типа электродвигателя (двигатель постоянного тока различного вида возбуждения, асинхронные двигатели). Например, для электродвигателя постоянного тока электромагнитный вращающий момент имеет вид [2]:

$$M = \frac{c\Phi}{R} (U - c\Phi)\omega, \tag{1}$$

где  $\Phi$  — магнитный поток; с — безразмерный коэффициент, определяемый конструктивными параметрами двигателя; R — сопротивление якоря; U — напряжение.

Первый способ составления уравнений движения машин состоит в применении теоремы о движении центра масс системы

$$m\overline{\alpha_c} = \overline{R} \tag{2}$$

и теоремы об изменении момента количества движения в проекции на ось вращения вала электродвигателя

$$I\frac{d\omega}{dt} = M + M',\tag{3}$$

где m — масса системы,  $\overline{\alpha_c}$  — ускорение её центра масс,  $\overline{R}$  — главный вектор внешних сил, I — момент инерции входного звена машины,  $\omega$  — угловая скорость вращения вала электродвигателя, M — его вращающий момент относительно оси вращения, M' — сумма моментов других внешних сил относительно этой оси.

Второй способ составления уравнений движения машин состоит в использовании уравнений Лагранжа 2-го рода (для примера взята система с одной степенью свободы) [1]:

$$\frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}} \right) - \frac{\partial L}{\partial q} = M + Q, \tag{4}$$

где  $L=T-\Pi$  — функция Лагранжа, T — кинетическая энергия,  $\Pi$  — потенциальная энергия, Q — обобщённая сила. В этом случае вращающий момент электродвигателя M входит в правую часть уравнения как обобщённая сила.

Третий способ составления уравнения машин состоит в применении уравнений Лагранжа — Максвелла. Приведём пример составления уравнения движения механизма с приводом от электродвигателя постоянного тока с независимым возбуждением. Если за обобщённые координаты выбрать  $\varphi$  — угол поворота якоря (ротора) электродвигателя и токи в обмотках якоря соответственно  $i_{\rm B}$  и  $i_{\rm S}$ , то уравнения Лагранжа — Максвелла будут иметь вид (случай постоянного тока в обмотке возбуждения) [1]:

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{\varphi}}\right) - \frac{\partial L}{\partial \varphi} = M_{\Pi},\tag{5}$$

$$\frac{d}{dt} \left( \frac{\partial L}{\partial i_{\rm g}} \right) = U - i_{\rm g} R_{\rm g} \,, \tag{6}$$

где L – функция Лагранжа – Максвелла

$$L = \frac{1}{2} (L_{\rm B} i_{\rm B}^2 + L_{\rm H} i_{\rm H}^2 + 2L_{\rm BH} i_{\rm B} i_{\rm H} + I_n \dot{\varphi}^2),$$

где U- напряжение в обмотке якоря;  $R_{\rm g}-$  сопротивление этой обмотки;  $M_{\Pi}-$  заданная функция угла поворота якоря;  $L_{\rm g}$ ,  $L_{\rm g}$ ,  $L_{\rm gg}-$  индуктивности; I- момент инерции.

Заключение. Во всех трёх способах составления уравнений движения машин и механизмов уравнения (2) - (6) содержат не только механические величины, но и электрические. Это позволяет учесть электромагнитные параметры для исследования и расчёта машин, в частности, переходных процессов.

#### Список литературы

- 1. Левитский, H. И. Колебания в механизмах / H. И. Левитский. M.: Hayka, 1988. 336 с.
- 2. Полтава, Л. И. Основы электропривода / Л. И. Полтава. М.: Изд-во «Недра», 1970. 224 с.

УДК 531.38, 531.39

## АЛГЕБРАИЧЕСКИЕ ИНВАРИАНТНЫЕ СООТНОШЕНИЯ В НОВЫХ РЕШЕНИЯХ УРАВНЕНИЙ КИРХГОФА-ПУАССОНА

**3ыза А.В.,** д-р физ.-мат. наук, доц., ORCID 0009-0001-3452-4916 ФГБОУ ВО «Донецкий государственный университет», г. Донецк, РФ z9125494@mail.ru

Введение. Аналитическая механика и ее составная часть динамика твердого тела и гиростата играют значительную роль в исследовании движений систем связанных твердых тел, используемой в современных технических конструкциях. И сегодня не вызывает сомнения утверждение Ф. Кляйна и А. Зоммерфельда, высказанное в 1910 году, о том, что ни один прибор не способствует в такой степени, как гироскоп, выявлению и пониманию взаимосвязей между физическими понятиями в механике. Данное обстоятельство несомненно объясняется примерами из динамики твердого тела, среди которых являются исследования Ж. Даламбера (1749 г.), посвященные объяснению прецессии и нутации Земли, Л. Фуко (1852 г.), который экспериментально доказал вращение Земли и других ученых.

Абсолютно твердое тело, как и материальная точка в механике, является упрощенной моделью в динамике твердого тела. Вместо уравнений в частных производных, используемых в случае деформированных тел, в аналитической механике применяются обыкновенные дифференциальные уравнения.

В настоящее время моделирование движений многих объектов техники в основном базируется на результатах и рекомендациях, полученных в аналитической механике. Важное место в динамике систем сложного состава занимает математическое описание их движения в виде систем дифференциальных уравнений, а также исследование интегрируемости этих уравнений с помощью аналитических и численных методов.

Актуальность исследования и применение различных математических методов интегрирования уравнений в задачах динамики твердого тела и гиростата связаны с тем, что в общем случае эти уравнения неинтегрируемые в квадратурах по Якоби (А. Пуанкаре, Э. Гюссон, П. Бургатти, В.В. Козлов, Д.А. Онищенко, С.И. Зиглин) [1]. Поэтому всегда представляет большой научно-практический интерес нахождение каждого нового случая интегрируемости дифференциальных уравнений движения твердого тела и гиростата в различных задачах динамики.

В докладе исследуются условия существования частных решений специального полиномиального класса в задаче о движении гиростата в поле действия потенциальных и гироскопических сил, описываемой уравнениями Кирхгофа-Пуассона [1, 2].

**Цель.** Нахождение новых случаев интегрируемости для уравнений класса Кирхгофа, в случае, когда функции, задающие инвариантные соотношения для неизвестных этих уравнений, являются алгебраическими многочленами вспомогательной переменной.

**Основная часть.** Уравнение задачи о движении гиростата под действием потенциальных и гироскопических сил в векторной форме таковы [1]:

$$A\dot{\boldsymbol{\omega}} = (A\boldsymbol{\omega} + \boldsymbol{\lambda}) \times \boldsymbol{\omega} + \boldsymbol{\omega} \times B\boldsymbol{\nu} + \boldsymbol{\nu} \times (C\boldsymbol{\nu} - \boldsymbol{s}), \quad \dot{\boldsymbol{\nu}} = \boldsymbol{\nu} \times \boldsymbol{\omega}.$$
 (1)   
 Уравнение (1) допускает первые интегралы:

$$A\boldsymbol{\omega} \cdot \boldsymbol{\omega} - 2(\boldsymbol{s} \cdot \boldsymbol{\nu}) + C\boldsymbol{\nu} \cdot \boldsymbol{\nu} = 2E, \qquad 2(A\boldsymbol{\omega} + \boldsymbol{\lambda}) \cdot \boldsymbol{\nu} - B\boldsymbol{\nu} \cdot \boldsymbol{\nu} = 2k,$$
$$\boldsymbol{\nu} \cdot \boldsymbol{\nu} = 1. \tag{2}$$

Неизвестными, подлежащими определению, в (1), (2) являются компоненты вектора  $\boldsymbol{\omega} = (\omega_1, \omega_2, \omega_3)$  – угловой скорости гиростата и компоненты вектора  $\mathbf{v} = (v_1, v_2, v_3)$  – орта оси симметрии силовых полей. Потенциальные силы в рассматриваемой задаче характеризуются матрицей  $C = {\rm diag}\,(C_1,C_2,C_3)$  и возникают при ньютоновском притяжении масс и взаимодействии магнитов c постоянным магнитным полем. Гироскопические силы характеризуются матрицей  $B = \text{diag}(B_1, B_2, B_3)$  и определяется лоренцевым воздействием магнитного поля на движущиеся в пространстве электрические заряды и циклическим движением роторов в теле-носителе. Также в (1), (2)  $A = \operatorname{diag}(A_1, A_2, A_3)$  – тензор инерции гиростата;  $\lambda = (\lambda_1, \lambda_2, 0)$  – гиростатический момент;  $\mathbf{s} = (s_1, s_2, 0)$  – вектор обобщенного центра масс.

Поставлена задача о нахождении условий существования у уравнений (1) решений вида (2):

$$\omega_{1} = \sigma^{2}, \omega_{2} = Q(\sigma) = \sum_{i=0}^{n} b_{i} \sigma^{i}, \omega_{3}^{2} = R(\sigma) = \sum_{j=0}^{m} c_{j} \sigma^{j},$$

$$\nu_{1} = \varphi(\sigma) = \sum_{i=0}^{l} a_{i} \sigma^{i}, \quad \nu_{2} = \psi(\sigma) = \sum_{j=0}^{n_{1}} g_{j} \sigma^{j}, \quad \nu_{3} = \frac{x(\sigma)}{\sigma} \sqrt{R(\sigma)},$$

$$x(\sigma) = \sum_{i=0}^{m_{1}} f_{i} \sigma^{i}.$$
(3)

Здесь  $b_i$ ,  $c_j$ ,  $a_i$ ,  $g_j$ ,  $f_i$  — параметры, подлежащие определению; n, m, l,  $n_1$ ,  $m_1$  — неотрицательные целые числа.

В результате анализа и исследования построены два новых частных решения вида (3) уравнений (1). Не выписывая эти новые решения в полном объеме, укажем только значения степеней полиномов решения из (3):

Первое новое частное решение:

$$(n = 2, m = 4, l = 2, n_1 = 3, m_1 = 2);$$

Второе новое частное решение:

$$(n = 2, m = 4, l = 3, n_1 = 2, m_1 = 2).$$

**Заключение.** Найденные новые случаи интегрируемости уравнений движения гиростата под действием потенциальных и гироскопических сил не имеют аналогов в классической задаче динамики твердого тела, а также в задаче о движении тяжелого гиростата.

**Информация о финансовой поддержке:** Работа выполнена при финансовой поддержке Министерства науки и высшего образования РФ в рамках базовой части госзадания в сфере науки (тема номер госрегистрации № 1023020900001-4-1.1.2;1.1.1).

- 1. Горр, Г. В. Динамика гиростата, имеющего неподвижную точку: моногр. / Г. В. Горр, А. В. Мазнев: М-во обр. и науки Украины, Донецк. нац. ун-т. Донецк: ДонНУ, 2010. 364 с. ISBN 978-966-639-431-9.
- 2. Зыза, А. В. Компьютерное исследование полиномиальных решений уравнений динамики гиростата / А. В. Зыза // Компьютерные исследования и моделирование. 2018. Т.10, №1. С. 7—25. DOI: 10.20537/2076-7633-2018-10-1-7-25.

## ДВУСТОРОННИЕ МАЖОРАНТЫ НЕОГРАНИЧЕННЫХ ФАЗОВЫХ ТРАЕКТОРИЙ БЕСТОКОВОЙ МОДЕЛИ СИНХРОННОГО ЭЛЕКТРОМОТОРА

**Коносевич Б.И.,** д-р физ.-мат. наук, ORCID 0009-0008-2474-6321, **Коносевич Ю.Б.,** канд. физ.-мат. наук, ORCID 0009-0001-4080-7744 ФГБНУ «Институт прикладной математики и механики», г. Донецк, РФ *konos.donetsk@yandex.ru* 

Рассматривается модель синхронного электромотора, не содержащая явно электрических токов и соответствующая случаю линейного диссипативного момента нагрузки. После введения безразмерных положительных параметров a,c и перехода к безразмерному времени  $\tau$  она описывается дифференциальным уравнением

$$\gamma'' = -\alpha\gamma' - \sin\gamma - c,\tag{1}$$

где  $\gamma$  – угол рассогласования магнитного поля ротора и равномерно вращающегося магнитного статора, штрих означает поля дифференцирование по  $\tau$ . Это уравнение играет роль эталонного в разработанном Г.А. Леоновым методе сведения, который дает условия, когда глобальная устойчивость многомерной фазовой системы с угловыми переменными) следует из глобальной устойчивости одного такого уравнения [1]. Глобальная устойчивость означает, что уравнение имеет на периоде одно асимптотически устойчивое и одно неустойчивое стационарное решение, и каждое его решение стремится к одному из Фазовые стационарных при  $t \to +\infty$ . траектории уравнения (1) определяются уравнением

$$\frac{d\gamma'}{d\gamma} = -a - \frac{\sin\gamma + c}{\gamma'}. (2)$$

При  $c \in (0,1)$  уравнение (1) имеет два счетных семейства стационарных решений при значениях  $d_s$ ,  $e_s$  угла  $\gamma$ , равных

$$d_s = \gamma^{(0)} + 2\pi s$$
,  $e_s = \gamma^{(1)} + 2\pi s$ ,  $s = 0$ ,  $\pm 1$ ,  $\pm 2$ ,...; (3)

$$\gamma^{(0)} = -\arcsin c, \quad \gamma^{(1)} = -\pi - \gamma^{(0)} \in \left(\pi, -\frac{\pi}{2}\right).$$
(4)

Локальный анализ показывает, что решениям первого семейства соответствуют асимптотически устойчивые стационарные точки уравнения (1)—устойчивый фокус или устойчивый узел, а решениям второго семейства соответствуют неустойчивые седловые стационарные точки.

Глобальный анализ уравнения вида (1) провел Ф. Трикоми [2]. Он установил, что для коэффициента диссипации a в уравнении (1) существует критическое значение, которое является непрерывной монотонно

возрастающей функцией  $a_{cr}(c)$  параметра  $c \in (0,1)$  и обладает тем свойством, что уравнение (1) глобально устойчиво в случае  $a > a_{cr}(c)$ , и оно не является глобально устойчивым при  $a \le a_{cr}(c)$ .

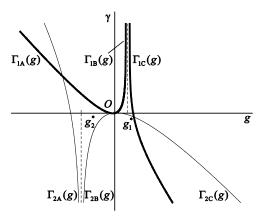
Во всех случаях к каждой седловой точке  $(0, e_s)$  уравнения (1) в ее втором квадранте примыкает сепаратриса, на которой  $\gamma' \to +\infty$  при  $\gamma \to -\infty$ . В случае  $a > a_{cr}(c)$  глобальной устойчивости к каждой седловой точке  $(0, e_s)$  уравнения (1) в ее четвертом квадранте примыкает сепаратриса, на которой  $\gamma' \to -\infty$  при  $\gamma \to +\infty$ . Следовательно, при  $a > a_{cr}(c)$  через каждую седловую точку  $(0, e_s)$  уравнения (1) проходит фазовая траектория  $\gamma' = f_s(\gamma)$ , которая состоит из этой точки и двух примыкающих к ней неограниченных сепаратрис. Это свойство играет ключевую роль в методе сведения. Для дальнейшего развития этого метода необходимо получить двусторонние оценки для таких сепаратрис при  $\gamma \to \mp\infty$  и в первую очередь при  $\gamma \to +\infty$ . Это достаточно сделать для правой ветви кривой  $\gamma' = f_0(\gamma)$ .

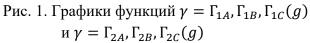
В данной работе в качестве нижней и верхней таких оценок предлагается использовать решения  $\gamma'=g_1(\gamma), \ \gamma'=g_2(\gamma)$  дифференциальных уравнений

$$\frac{dg}{d\gamma} = -a + \frac{1-c}{g}, \quad \frac{dg}{d\gamma} = -a - \frac{1+c}{g}, \tag{5}$$

определенные при  $\gamma \geq \gamma^0$  начальной точкой  $(\gamma^0, g^0)$ ,  $g^0 = f_0(\gamma^0)$ , на правой ветви кривой  $\gamma' = f_0(\gamma)$ . Значения  $g_1^* = (1-c)/a > 0$ ,  $g_2^* = -(1+c)/a < 0$  являются стационарными для уравнений (5). Функции  $\gamma = \gamma_1(g)$ ,  $\gamma = \gamma_2(g)$ , обратные к функциям  $\gamma' = g_1(\gamma)$ ,  $\gamma' = g_2(\gamma)$ , являются решениями дифференциальных уравнений

$$\frac{d\gamma}{dg} = -\frac{1}{a} - \frac{1-c}{a} \frac{1}{ag - (1-c)}, \quad \frac{d\gamma}{dg} = -\frac{1}{a} + \frac{1+c}{a} \frac{1}{ag + (1+c)} \tag{6}$$


при начальной точке  $(g^0, \gamma^0)$ . Они выражаются по формулам


$$\gamma = \gamma_1(g) = \gamma^0 + \Gamma_1(g) - \Gamma_1(g^0), \ \gamma = \gamma_2(g) = \gamma^0 + \Gamma_2(g) - \Gamma_2(g^0),$$
 (7) где функции

$$\Gamma_1(g) = -\frac{1}{a}g - \frac{1-c}{a^2}\ln\frac{|ag - (1-c)|}{1-c}, \ \Gamma_2(g) = -\frac{1}{a}g + \frac{1+c}{a^2}\ln\frac{|ag + (1+c)|}{1+c}$$
(8)

– это решения уравнений (6) при начальных условиях  $\Gamma_1(0) = 0$ ,  $\Gamma_2(0) = 0$ .

Функция  $\gamma = \Gamma_1(g)$  представляется в виде объединения трех однозначных выпуклых вниз функций  $\gamma = \Gamma_{1A}$ ,  $\Gamma_{1B}$ ,  $\Gamma_{1C}(g)$ , определенных на промежутках  $(-\infty,0]$ ,  $[0,g_1^*)$ ,  $(g_1^*,+\infty)$ . Их графики показаны на рис. 1 утолщенными линиями. Все эти функции строго монотонны, и поэтому на соответствующих промежутках однозначно определены обратные к ним монотонные функции  $g = G_{1A}$ ,  $G_{1B}$ ,  $G_{1C}(\gamma)$ , являющиеся решениями дифференциальных уравнений (5). В результате решение  $g = G_1(\gamma)$  первого уравнения (5) при условии  $G_1(0) = 0$  является многозначной функцией, составленной из этих трех однозначных функций.





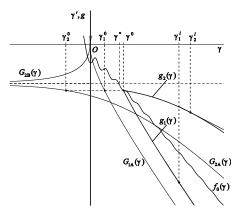



Рис. 2. Определение нелинейных и линейных мажорант фазовой кривой  $\gamma' = f_{0(\gamma)}$ 

Аналогичным образом, функция  $\gamma = \Gamma_2(g)$  является объединением трех однозначных выпуклых вверх функций  $\gamma = \Gamma_{2A}$ ,  $\Gamma_{2B}$ ,  $\Gamma_{2C}(g)$ , определенных на промежутках  $(-\infty,g_2^*)$ ,  $(g_2^*,0]$ ,  $[0,+\infty)$ . Их графики показаны на рис. 1 тонкими линиями. Эти функции строго монотонны, и поэтому на соответствующих промежутках однозначно определены обратные к ним монотонные функции  $g = G_{2A}$ ,  $G_{2B}$ ,  $G_{2C}(\gamma)$ , являющиеся решениями дифференциальных уравнений (5). В результате решение  $g = G_2(\gamma)$  второго уравнения (5) при условии  $G_2(0) = 0$ , представляющееся в виде объединения этих трех однозначных функций, является многозначной функцией,

В качестве нелинейных мажорант  $\gamma'=g_1(\gamma)$ ,  $\gamma'=g_2(\gamma)$  неограниченной части правой ветви кривой  $\gamma'=f_0(\gamma)$ , лежащей справа от начальной точки  $(\gamma^0, g^0), g^0=f_0(\gamma^0)$ , могут использоваться только сдвинутые в эту точку неограниченные части кривых  $g=G_{1A}(\gamma)$ ,  $g=G_{2A}, (\gamma)$ , которые расположены справа от точек их пересечения с горизонтальной прямой  $\gamma'=g^0$  (рис. 2). При этом выбранное значение  $\gamma^0$  должно удовлетворять неравенству  $\gamma^0>\gamma^*$ , где  $\gamma^*-$  абсцисса точки пересечения кривой  $\gamma'=f_0(\gamma)$  с прямой  $\gamma'=g_2^*$ .

Доказано, что кривые  $\gamma' = g_1, g_2(\gamma)$  действительно являются нижними и верхними мажорантами правой ветви фазовой кривой  $\gamma' = f_0(\gamma)$ .

**Информация о финансовой поддержке**: Работа выполнена при финансовой поддержке Министерства науки и высшего образования РФ в рамках базовой части госзадания в сфере науки, тема № 1023020900001-4-1.1.2;1.1.1.

- 1. Гелиг, А. Х. Устойчивость нелинейных систем с неединственным состоянием равновесия / А. Х. Гелиг, Г. А. Леонов, В. А. Якубович. М.: Наука, 1978. 400 с.
- 2. Tricomi, F. Integrazione di unequazione differenziale presentasi in electrotechnica // Annali della Roma Schuola Normale Superiore de Pisa. 1933. Vol. 2, No. 2. P. 1–20.

# СОСТАВЛЕНИЕ УРАВНЕНИЙ ДВИЖЕНИЯ ВИБРАЦИОННОГО ПНЕВМАТИЧЕСКОГО СЕПАРАТОРА И ИССЛЕДОВАНИЕ ВЛИЯНИЯ ЕГО ПАРАМЕТРОВ НА ОБОГАЩЕНИЕ ПОЛЕЗНЫХ ИСКОПАЕМЫХ

**Корчевский А.Н.**<sup>1</sup>, канд. техн. наук, доц., **Гордеев Г.Г.**<sup>2</sup>, канд. физ.-мат. наук, доц.,

**Щепин Н.Н.**<sup>3</sup>, канд. физ.-мат. наук, доц., ORCID 0009-0007-7973-7038 <sup>1</sup>ФГБОУ ВО «Донецкий национальный технический университет», г. Донецк, РФ <sup>2</sup>ФГБНУ «Институт прикладной математики и механики», г. Донецк, РФ <sup>3</sup>ФГБОУ ВО «Донецкий государственный университет», г. Донецк, РФ *corchevskyial@mail.ru, gordeev\_g\_g@mail.ru, shchepin\_nick@mail.ru* 

**Введение.** Для переработки сырья при обогащении полезных ископаемых применяются технологические машины, наиболее распространенные из них являются вибропневмосепараторы и концентрационные столы.

Вибропневмосепараторы относятся к классу гравитационного оборудования и широко применяются в различных технологиях разделения зернистых материалов при обогащении. Задача определения зависимостей и анализа кинематических и динамических параметров движения рабочего органа вибропневмосепаратора и связи параметров его перемещения с учетом возможности управления показателями разделения полезных ископаемых является актуальной научно-практической задачей.

**Цель** исследования — составление уравнений движения и равновесия вибропневмосепаратора и исследование влияния его параметров на качество обогащения полезных ископаемых.

Основная часть. Основной частью вибропневмосепаратора является дека, имеющая сплошную поверхность и «кипящий слой» разделяемого материала, создается за счет турбулентных потоков жидкости, текущей по наклонной. Дека крепится к неподвижной раме с помощью четырех тяг, конструктивно реализованных в виден одинаковых цилиндрических стержней, все соединения шарнирные [1]. В равновесном состоянии дека опирается на ось рычага вибровозбудителя, электродвигатель через клиноременную передачу сообщает главному валу вибровозбудителя крутящий момент [1]. Дека совершает плоскопараллельное движение в вертикальной плоскости.

В работе с помощью теорем о движении центра масс и об изменении плоского движения составляются уравнений движения деки (первый способ), при этом за независимую переменную для системы с одной степенью свободы выбран угол  $\varphi$  наклона передней тяги и горизонтали [1]:

$$\ddot{\varphi} + p_1 \dot{\varphi}^2 + p_2 \dot{\varphi} + p_3 = a_1 p_4 + a_2 p_5 , \qquad (1)$$

где величины  $p_i$   $i = 1,2,3,4,5 - функции <math>\varphi$ .

Электродвигатель привода является асинхронным двигателем трехфазного тока. Его вращающий момент M определяется из уравнения [2]:

$$M = \frac{2M_k}{\frac{S}{S_k} + \frac{S_k}{S}} \,, \tag{2}$$

где  $M_k$  и  $s_k$  — критический момент и скольжение, которые определяются из формул

$$M_k = \frac{3U^2}{2\omega_0(x_c + x_p')}, \qquad s_k = \pm \frac{r_p'}{x_c + x_p'},$$
 (3)

где U — фазное направление области статора;  $r_p$  и  $x_p'$  — активное и реактивное сопротивления фазы ротора, приведенные (пересчитанные) к статору.

При составлении уравнения (1) вращающий момент входит в правую часть уравнения, выражающего теорему об изменении кинетического момента деки.

Рассмотрены линейные уравнения деки. Исследовано влияние механических характеристик вибропневмосепаратора на качество обогащения полезных ископаемых.

Возможно исследование влияния электрических параметров электропривода на качество обогащения полезных ископаемых.

Возможно для составления уравнений движения вибропневмосепаратора применение уравнений Лагранжа второго рода и уравнений Лагранжа-Максвелла.

Заключение. В докладе с помощью методов теоретической механики составлены уравнения движения вибропневмосепаратора и исследовано влияние его механических характеристик на качество обогащения полезных ископаемых.

- 1. Корчевский, А. Н. Моделирование конструктивных и проектных параметров вибрационного пневматического сепаратора. Фундаментальные и прикладные проблемы в горном деле / А. Н. Корчевский, Г. Г. Гордеев // Материалы всероссийской научно-практической конференции. Междуреченск, 25 февраля 2016 г. С. 105—108.
- 2. Полтава, Л. И. Основы электропривода / Л. И. Полтава. М.: Изд-во «Недра», 1970. 224 с.

#### ОБ УСЛОВИЯХ СУЩЕСТВОВАНИЯ РЕГУЛЯРНЫХ ПРЕЦЕССИЙ ГИРОСТАТА В ГЛАВНОЙ СИСТЕМЕ КООРДИНАТ

**Мазнев А.В.,** д-р физ.-мат. наук, доц., ORCID 0009-0002-5602-3925 ФГБОУ ВО «Донецкий государственный университет», г. Донецк, РФ *o.mazniev.dongu@mail.ru* 

Введение. Многие конструкции современной техники (роботы, ракеты, космические и навигационные приборы и другие) совершают регулярные прецессии. Примером регулярной прецессии может служить движение волчка Лагранжа в поле силы тяжести. Как правило, эти исследования проводились в прецессионной системе координат (системе, одна из осей которой направлена по прямой, которая фиксирована в теле, и образует во все время движения постоянный угол с прямой, неподвижной в пространстве). Обзор основных результатов, полученных в динамике твердого тела в области исследования прецессий, приведен в работе [1]. В ней рассмотрены прецессии гиростата в случае, когда величина гиростатического момента в системе координат, связанной с гиростатом, постоянна. В докладе предложен другой подход в изучении прецессионных движений, а именно рассмотрено движение гиростата в главной системе координат (системе, оси которой направлены по осям эллипсоида инерции). В результате исследований удалось найти условия существования регулярной прецессии, которые в прецессионной системе координат не были обнаружены.

**Цель.** Для уравнений движения Кирхгофа-Пуассона найти условия существования регулярных прецессий гиростата под действием потенциальных и гироскопических сил в главной системе координат.

**Основная часть**. Рассмотрим задачу о движении гиростата под действием потенциальных и гироскопических сил, которая описывается дифференциальными уравнениями [2]

$$A\dot{\boldsymbol{\omega}} = (A\boldsymbol{\omega} + \boldsymbol{\lambda}) \times \boldsymbol{\omega} + \boldsymbol{\omega} \times B\boldsymbol{\nu} + \boldsymbol{\nu} \times (C\boldsymbol{\nu} - \boldsymbol{s}), \tag{1}$$
  
$$\dot{\boldsymbol{\nu}} = \boldsymbol{\nu} \times \boldsymbol{\omega}, \tag{2}$$

где введены обозначения:  $\boldsymbol{\omega} = (\omega_1, \omega_2, \omega_3)$  – вектор угловой скорости теланосителя;  $\boldsymbol{\nu} = (\nu_1, \nu_2, \nu_3)$  – единичный вектор оси симметрии силовых полей;  $\boldsymbol{\lambda} = (\lambda_1, \lambda_2, \lambda_3)$  – гиростатический момент;  $\boldsymbol{s} = (s_1, s_2, s_3)$  – вектор обобщенного центра масс;  $\boldsymbol{A} = diag(A_1, A_2, A_3)$  – тензор инерции гиростата;  $\boldsymbol{B} = diag(B_1, B_2, B_3)$  – матрица, характеризующая гироскопические силы;  $\boldsymbol{C} = diag(C_1, C_2, C_3)$  – матрица, характеризующая потенциальные силы; точка над переменными  $\boldsymbol{\omega}$ ,  $\boldsymbol{\nu}$  обозначает дифференцирование по времени.

Уравнения (1), (2) имеют первые интегралы

$$\mathbf{v} \cdot \mathbf{v} = 1$$
,  $2(A\boldsymbol{\omega} + \boldsymbol{\lambda}) \cdot \mathbf{v} - B\mathbf{v} \cdot \mathbf{v} = 2k$ , (3)

$$A\boldsymbol{\omega} \cdot \boldsymbol{\omega} - 2(\boldsymbol{s} \cdot \boldsymbol{\nu}) + C\boldsymbol{\nu} \cdot \boldsymbol{\nu} = 2E, \tag{4}$$

где k, E — произвольные постоянные.

Пусть a = (0; 0; 1) — единичный вектор, неизменно связанный с телом-носителем. Тогда для регулярных прецессий тела-носителя относительно вектора  $\nu$  имеют место равенства

$$\boldsymbol{a} \cdot \boldsymbol{v} = a_0, \boldsymbol{\omega} = n\boldsymbol{a} + m\boldsymbol{v}, \tag{5}$$

где  $a_0 = cos\theta_0$  ( $\theta_0 = \angle(a, v)$ ), n и m – постоянные. К настоящему времени для уравнений (1), (2) изучены условия существования не только регулярных прецессий гиростата, но и другие классы прецессионных движений в прецессионной системе координат [1]

$$\boldsymbol{a} \cdot \boldsymbol{\nu} = a_0, \boldsymbol{\omega} = \dot{\varphi} \boldsymbol{a} + \dot{\psi} \boldsymbol{\nu}, \tag{6}$$

здесь  $\dot{\boldsymbol{\varphi}}, \dot{\boldsymbol{\psi}}$  – функции времени t.

Как показано в статье [3], для изучения движения главных осей инерции необходимо выполнить преобразования переменных и параметров уравнений (1), (2), значения которых получены в прецессионной системе координат. В данном докладе использован другой метод, он основан на получении решения уравнений (1), (2) для регулярных прецессий (5) в главной системе координат. Этот подход не требует сложных вычислительных операций и дает возможность получить результат в главной системе координат в переменных и параметрах, описанных после формул (1), (2).

Пусть 0xyz — главная система координат с единичными базисными векторами  $i_1$ ,  $i_2$ ,  $i_3$ . С помощью параметров  $\mu_0$ ,  $\sigma_0$  зададим положение вектора  $\boldsymbol{a}$  в этой системе

$$a = a_1 i_1 + a_2 i_2 + a_3 i_3, \tag{7}$$

где

$$a_1 = sin\mu_0 cos\sigma_0, a_2 = sin\mu_0 sin\sigma_0, a_3 = cos\mu_0.$$
 (8)

Рассмотрим общий случай положения вектора a, то есть для компонент (7), (8) выполняются условия

$$sin\mu_0 cos\sigma_0 \neq 0, sin\mu_0 sin\sigma_0 \neq 0, cos\mu_0 \neq 1.$$
 (9)

Используя общий метод исследования прецессионных движений [1], получены условия существования регулярных прецессий в главной системе координат

$$m = \frac{B_1 - B_2}{2(A_1 - A_2)}, (B_1 - B_2)^2 = 4(A_1 - A_2)(C_2 - C_1), \tag{10}$$

$$C_1(A_2 - A_3) + C_2(A_3 - A_1) + C_3(A_1 - A_2) = 0, (11)$$

$$B_1(A_2 - A_3) + B_2(A_3 - A_1) + B_3(A_1 - A_2) = 0, (12)$$

$$n(A_2 - A_1)\sin\mu_0\sin 2\sigma_0 + 2(\lambda_2\cos\sigma_0 - \lambda_1\sin\sigma_0) = 0, \tag{13}$$

 $n(A_1cos^2\sigma_0 + A_2sin^2\sigma_0 - A_3)sin2\mu_0 + 2(\lambda_1sin\mu_0cos\sigma_0 +$ 

$$+\lambda_2 sin\mu_0 sin\sigma_0 + \lambda_3 cos\mu_0) = 0, \tag{14}$$

$$n[B_{1} - m(A_{1} - A_{2} - A_{3})] + s_{1}sin\mu_{0}cos\sigma_{0} + s_{2}sin\mu_{0}sin\sigma_{0} + s_{3}cos\mu_{0} + m(\lambda_{1}sin\mu_{0}cos\sigma_{0} + \lambda_{2}sin\mu_{0}sin\sigma_{0} + \lambda_{3}cos\mu_{0}) = 0.$$
 (15)

Таким образом, при задании  $A_i(i=\overline{1,3})$  параметры  $C_i(i=\overline{1,3})$  определяются из равенств (11), а параметры  $B_i(i=\overline{1,3})$  из равенств (12). Учет этих параметров во втором равенстве (10) приводит к дополнительному условию на параметры задачи. Например, если выполняются условия

$$A_3 = A_1, B_3 = B_1, C_3 = C_1,$$
 (16)

то в силу (16) равенства (11), (12) являются тождествами. Тогда необходимо лишь потребовать выполнения ограничений  $A_2 < A_1$ ,  $C_1 < C_2$ , при которых второе уравнение из (10) дает действительное значение для  $B_1 - B_2$ .

Для нахождения параметров  $\mu_0$ ,  $\sigma_0$  обратимся к равенствам (13), (14) и для получения наглядного результата положим  $\lambda_3=0$ . Тогда условия на параметры  $\mu_0$ ,  $\sigma_0$  таковы

$$tg\sigma_0 = \frac{\lambda_2(A_1 - A_3)}{\lambda_1(A_2 - A_3)}, \quad \sin\mu_0 = \frac{\lambda_1 \sin\sigma_0 - \lambda_2 \cos\sigma_0}{n(A_2 - A_1)\sin\sigma_0 \cos\sigma_0}.$$
 (17)

Отметим, что в общем случае для нахождения условий на параметры  $\mu_0$ ,  $\sigma_0$  из (13), (14) можно найти соотношения

$$\sin \mu_0 = \frac{\lambda_1 sin\sigma_0 - \lambda_2 cos\sigma_0}{n(A_2 - A_1)sin\sigma_0 cos\sigma_0}, \quad \cos \mu_0 = \frac{\lambda_3 (\lambda_1 sin\sigma_0 - \lambda_2 cos\sigma_0)}{(A_2 - A_3)\lambda_1 sin\sigma_0 + (A_1 - A_3)cos\sigma_0}$$
 (18)

и воспользоваться равенством  $sin^2\mu_0 + cos^2\mu_0 = 1$ . После указанных выше преобразованиях, значение параметра n находится подстановкой величины m из первого уравнения системы (10), величин  $\mu_0$ ,  $\sigma_0$  из (17) в соотношение (15). Отличительным свойством полученных выше результатов является свойство, что векторы  $\lambda$  и s не коллинеарны вектору a.

Заключение. Найдены условия существования регулярных прецессий гиростата под действием потенциальных и гироскопических сил в главной системе координат.

**Информация о финансовой поддержке**: Работа выполнена при финансовой поддержке Министерства науки и высшего образования РФ в рамках базовой части госзадания в сфере науки (тема номер госрегистрации № 1023020900001-4-1.1.2;1.1.1).

- 1. Горр, Г. В. Прецессионные движения в динамике твердого тела и в динамике систем связных твердых тел / Г. В. Горр, А. В. Мазнев, Е. К. Щетинина. Донецк: ДонНУ, 2009. 222 с. ISBN 978-966-639-406-7.
- 2. Горр, Г. В. Динамика гиростата, имеющего неподвижную точку / Г. В. Горр, А. В. Мазнев. Донецк: ДонНУ, 2010. 364 с.
- 3. Горр, Г. В. О движении главных осей твердого тела, имеющего неподвижную точку, в случае прецессий относительно вертикали / Г. В. Горр, Т. В. Балаклицкая // Механика твердого тела. 2019. Вып. 49. С. 55–65.

## ПРИМЕНЕНИЕ УРАВНЕНИЯ ЛАГРАНЖА 2-ГО РОДА ДЛЯ МОДЕЛИРОВАНИЯ РАБОТЫ МЕХАНИЧЕСКОГО РЕГУЛЯТОРА РАСПРЕДЕЛИТЕЛЬНОГО ТНВД ВЫСОКООБОРОТНОГО ДИЗЕЛЯ

#### **Тырловой С.И.,** канд. техн. наук, доц., **Костенко А.В., Шевченко Д.С.**

ФГБОУ ВО «Луганский государственный университет имени Владимира Даля», г. Луганск, РФ tyrlovoy.si@mail.ru

Распределительные топливные насосы высокого давления (ТНВД), оснащенные в большинстве случаев центробежными регуляторами частоты вращения, используются для высокооборотных автомобильных дизелей. В возникают эксплуатации отклонения конструктивных параметров регулятора заданных. Это характеристик изменяет системы otавтоматического регулирования частоты вращения (САРЧ) и может неустойчивых возникновению переходных процессов автомобильного дизеля [1,2]. Это снижает эффективность эксплуатации транспортного средства. Поэтому моделирование работы регулятора [3] является необходимым этапом разработки мероприятий по должной настройке САРЧ автомобильного дизеля в эксплуатации.

Применение уравнения Лагранжа 2-го рода для механической системы с одной степенью свободы позволяет автоматически учесть изменение кинетической энергии элементов регулятора как от скорости, так и от их координат:

$$\frac{\mathrm{d}}{\mathrm{dt}} \left( \frac{\partial \mathrm{T}}{\partial \mathrm{u}} \right) - \frac{\partial \mathrm{T}}{\partial z} = \mathrm{Q}_{\mathrm{z}},$$

где z – перемещение муфты измерителя); Т – кинетическая энергия системы;  $Q_z$  – обобщенная сила.  $Q_z = A(\omega,z) - E(\phi,z) - \theta \frac{dz}{dt}$ .

Кинетическая энергия Т регулятора (рис. 1) и связанных с ним движущихся деталей насосных элементов определяется следующим образом:

$$T = m_{\rm M} \frac{U^2}{2} + J_{\xi} \cdot \frac{\omega_{\xi}^2}{2} + J_{z} \cdot \frac{\omega_{\rm p}^2}{2} + J_{\rm R} \cdot \frac{\omega_{\rm R}^2}{2} + m_{\rm d} \cdot \frac{U_{\rm d}^2}{2},$$

где  $m_M$  и U — масса и скорость муфты измерителя;  $\omega_\xi$ ,  $J_\xi \, \omega_p$ ,  $J_z \, u \, \omega_R$  — угловые скорости и моменты инерции грузов (относительно осей  $\xi$  и z, ось  $\xi$  перпендикулярна оси z) и рычага 28 (см. рис. 1);  $m_d$  и  $U_d$  масса и скорость дозатора 17, подключенного к нижней части рычага 28.

В уравнение для определения кинетической энергии входят моменты инерции грузов  $J_Z$ ,  $J_\xi$  относительной оси Z и оси  $\xi$ , перпендикулярной Z.

Используя расчетную схему (рис. 2) можно получить аналитические выражения для определения  $J_Z$ :

$$J_Z = \frac{4-m}{a-b} \cdot \left( T_1 - T_2 - T_3 + T_4 + T_5 + \frac{2}{3} - T_6 \right),$$

где  $T_1 = b^4 \cdot \cos \Psi \cdot [0.167 \cdot \sin^3 \Psi - 0.25 \cdot \cos \Psi \cdot \sin^2 \Psi \cdot tg(\Psi - \alpha) + 0.167 \cdot \sin \Psi \cdot (\cos^2 \Psi) \cdot tg^2(\Psi - \alpha) - (\cos \Psi \cdot tfa)^3/24], T_2 = b^4 \cdot \cos \Psi \cdot [0.167 \cdot \sin^3 \Psi - 0.25 \cdot \cos \Psi \cdot \sin^2 \Psi \cdot tg\Psi + 0.167 \cdot \cos^2 \Psi \cdot \sin \Psi \cdot tg^2\Psi - (\cos \Psi \cdot tg\Psi)^3/24], ... T_6 = b^4 \cdot \cos^3 \Psi \cdot \{tg\Psi - tg(\Psi - \alpha)\} \cdot \sin \Psi \cdot (tg\Psi - 0.333 \cdot tg(\Psi - \alpha) + 0.125 \cdot [tg^2(\Psi - \alpha) - tg^2 \Psi] \cdot \cos \Psi\}.$ 

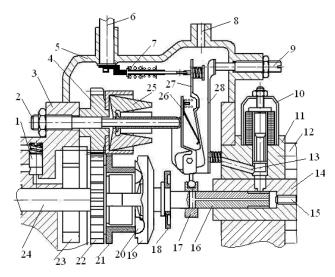



Рис. 1. Расчетная схема регулятора

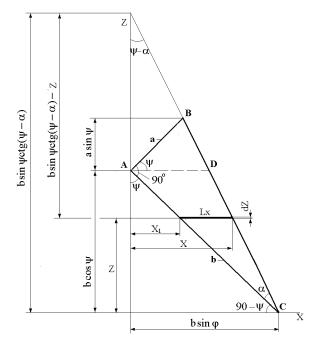



Рис. 2. Расчетная схема для определения момента инерции груза  $J_Z$  регулятора относительно оси Z

Аналитическое выражение для  $J_Z = J_Z$  ( $\psi$ ) весьма сложно, поэтому целесообразно использовать далее аппроксимирующее уравнение  $J_Z = 0.1545 \cdot \psi + 9.581$  (здесь  $J_Z$  в г $\cdot$ см $^2$ ,  $\psi$ -в градусах).

После ряда преобразований, выражение для кинетической энергии примет вид:

$$T = m_{M} \frac{U^{2}}{2} + J_{\xi} \cdot \frac{k_{\xi}^{2}}{2} \cdot U^{2} + J_{z} \cdot \frac{\omega^{2}}{2} \cdot i_{P}^{2} + J_{R} \cdot \frac{k_{R}^{2}}{2} \cdot U^{2} + m_{d} \cdot \frac{i_{d}^{2}}{2} - U^{2},$$

в результате чего уравнение Лагранжа будет выглядеть как:

$$\begin{split} m_p \frac{d^2 z}{dt^2} &= A(\omega, z) - E(\phi, z) - (8 - 10^{-4} - z - 4 - 10^{-5}) - \omega^2 - i_p^2 - \theta \frac{dz}{dt}, \\ \text{где} \quad m_p &= m_M + J_\xi \cdot k_\xi^2 + J_R \cdot k_R^2 + m_d \cdot k_d^2. \end{split}$$

Получены частотные характеристики регулятора (рис. 3 а, б).

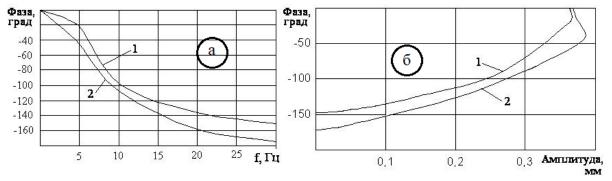



Рис. 3. Частотные характеристики регулятора а – фазовая; б – амплитудно-фазовая

Анализ полученных частотных характеристик показал, что полоса пропускания исследуемого регулятора составляет 32 Гц, наибольшие амплитуды наблюдаются в диапазоне 5...16 Гц, это соответствует режимам трогания автомобиля с места и холостого хода. При разработке комплекса ремонтно-восстановительных работ по настройке регулятора этим режимам следует уделить особое внимание, поскольку именно здесь возможны автоколебания.

- 1. Тырловой, С. И. Восстановление характеристик топливных насосов автомобильных дизелей изменением параметров центробежного регулятора / С. И. Тырловой // Вестник национального технического университета «ХПИ» Двигатели внутреннего сгорания. 2001. Вып. 2. 2001. С. 44–50.
- 2. Тырловой, С. И. Влияние эксплуатационных факторов на характеристики топливной аппаратуры дизелей / С. И. Тырловой // Вестник ВНУ. 2005. №6(88). С. 149–154.
- 3. Марков, В. А. Моделирование системы автоматического регулирования частоты вращения дизельного двигателя / Поздняков Е. Ф., Фурман В. В., Плахов С. В. // Известия высших учебных заведений. Машиностроение. 2019. № 7. С. 35–46. DOI: 10.18698/0536-1044-2019-7-35-46.

#### ИССЛЕДОВАНИЕ КОНЕЧНОМЕРНОЙ МОДЕЛИ ЗАМКНУТОГО УПРУГОГО СТЕРЖНЯ

**Щепин Н.Н.**, канд. физ.-мат. наук, доц., ORCID 0009-0007-7973-7038 ФГБОУ ВО «Донецкий государственный университет», г. Донецк, РФ *shchepin nick@mail.ru* 

Введение. В работах [1, 2] была предложена конечномерная модель замкнутого стержня. Целью конечномерного подхода являлось как определение в явном виде известных форм оси моделируемого стержня, так и установление новых конфигураций. Кроме того, конечномерный подход позволяет определять достаточные условия устойчивости положения равновесия системы, используя ее потенциальную энергию и находить необходимые условия устойчивости, исходя из анализа уравнений движения системы. В настоящей работе рассмотрена система тел, связанных упругими цилиндрическими шарнирами с нелинейным упругим моментом. Найдены равновесные конфигурации для формы типа "восьмерка".

**Целью** работы являлось нахождение равновесных конфигураций конечномерной модели упругого стержня, которая представляет собой замкнутую систему твердых тел, связанных цилиндрическими шарнирами, позволяющими промоделировать нелинейный прогиб, а также влияние наличия шарнира в точке пересечения оси моделируемого стержня.

**Постановка задачи.** Рассмотрим систему n гироскопов Лагранжа, связанных упругими цилиндрическими шарнирами, расположенными в точках  $O_j$  пересечения осей симметрии тел  $S_j$ . Считаем, что система замкнута, при этом  $O_1 = O_{n+1}$ . Полагаем, что на систему не действуют внешние силы и моменты, вследствие чего ее центр масс C неподвижен.

Рассмотрим случай, когда все оси симметрии тел лежат в одной плоскости CXY, а оси шарниров коллинеарны оси CZ. Считаем, что действие тела  $S_{j-1}$  на  $S_j$  характеризует упругий момент  $L_j$ , приложенный в точке  $O_j$ , а действие тела  $S_{j+1}$  на  $S_j$  — упругий момент  $-L_{j+1}$ , приложенный в точке  $O_{j+1}$ . В случае, когда тела связаны цилиндрическими шарнирами, имеем

$$L_j = c^2 \sin(\psi_j - \psi_{j-1}), \quad j = \overline{1..n},$$
 (1)

для замкнутых систем считаем  $\psi_0 = \psi_n$ .

Поскольку внешнее силовое поле отсутствует, то потенциальная энергия системы имеет вид

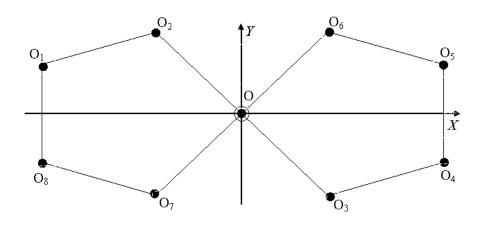
$$\Pi = -c^2 \sum_{j=1}^{n} \cos(\psi_j - \psi_{j-1}). \tag{2}$$

Для замкнутой системы выполняются следующие соотношения:

$$f_1 = \sum_{j=1}^n h_j \cos \psi_j = 0, \quad f_2 = \sum_{j=1}^n h_j \sin \psi_j = 0.$$
 (3)

Для систем с дополнительными нелинейными связями, наложенными на переменные, положения равновесия находятся из условия стационарности функции  $L = \Pi + \lambda_1 f_1 + \lambda_2 f_2$ ,

$$\delta L = \delta \Pi + \lambda_1 \delta f_1 + \lambda_2 \delta f_2 = 0. \tag{4}$$


Из (2)–(4) получаем систему соотношений

$$c^{2}(\sin(\psi_{j+1} - \psi_{j}) - \sin(\psi_{j} - \psi_{j-1})) = h_{j}(\lambda_{2}\cos\psi_{j} - \lambda_{1}\sin\psi_{j}), j = \overline{1, n},$$

$$\psi_{n+1} = \psi_{1}, \qquad (5)$$

которая вместе с равенствами (3) позволяет определить неизвестные величины поставленной задачи.

Рассмотрим некоторые частные случаи конфигурации "восьмерка", Как установлено ранее, одинаковые конечномерные конфигурации могут быть реализованы при различном числе тел в системе в зависимости от наличия или отсутствия шарнира в точке  $\theta$  пересечения осей симметрии тел. Так, на рисунке при отсутствии шарнира система содержит восемь тел, а при наличии – десять.



Рассмотрим данную конфигурацию. Полагалось, что

$$O_1O_2 = O_3O_4 = O_4O_5 = h_1, O_2O_3 = H_2$$
 (6)

и в системе, состоящей из восьми тел  $H_2=h_2$ , а в случае десяти тел имеем  $O_2O=OO_3=h_2,\, H_2=2h_2$  .

Углы  $\psi_k$  в случае восьми тел равны

$$\psi_1 = \psi_3 = \theta, \psi_2 = -\psi, \ \psi_4 = \pi/2,$$
 (7)

а в случае десяти тел

$$\psi_1 = \psi_4 = \theta, \psi_2 = \psi_3 = -\psi, \psi_5 = \pi/2.$$
 (8)

Подстановка этих соотношений в уравнения равновесия (5) и уравнения связей (3) приводит к соотношениям, которым должны удовлетворять углы  $\psi$  и  $\theta$ :

$$\sin \psi = (2\sin \theta + 1)a, \tag{9}$$

$$\frac{\cos\theta - \sin(\theta + \psi)}{2\sin(\theta + \psi)} = a\frac{\cos\theta}{\cos\psi},\tag{10}$$

где  $a = h_1, /H_2$ .

Введем дополнительный параметр  $p = \cos \psi / \cos \theta$ . Параметр p больше нуля, так как углы  $\psi$  и  $\theta$  острые. Из (9), (10) находим

$$\sin \theta = \frac{p(1-a) - 2a^2}{(p+2a)^2} \,. \tag{11}$$

Из (11) следует, что

$$a < 1, p > \frac{2a^2}{1-a}.$$
 (12)

Из (9), (11) получаем

$$F(p) = p^5 + 6ap^4 + 2(2a+1)(3a-1)p^3 + 4a(a+1)(2a-1)p^2 -$$

$$-12a^2p - 8a^3 = 0.$$
(13)

Поскольку многочлен F(p) имеет только одну перемену знака в ряду коэффициентов, то уравнение имеет только один положительный корень p = p(a). Этот корень находится в интервале

$$\frac{\sqrt{2\beta_1}}{a+\beta_1}$$

**Заключение.** Таким образом, решения (7) и (8), описывающие конфигурацию из восьми и десяти тел, существуют. Углы  $\psi$  и  $\theta$  находятся для конкретного значения параметра a из формул (9), (11) после определения p из уравнения (13) с учетом (12).

- 1. Болграбская, И. А. Конечномерная модель замкнутого упругого стержня / И. А. Болграбская, Н. Н. Щепин // Механика твердого тела. 2005. Вып. 35. С. 33—39.
- 2. Болграбская, И. А. О новом решении уравнений равновесия системы тел с упругой связью / И. А. Болграбская, Н. Н. Щепин // Прикл. математика и механика. 2014. Т. 78, № 5. С. 671—680.

### Механика деформируемого твердого тела

УДК 539.3

## ВЛИЯНИЕ НАКЛОНА РАЗГРУЗОЧНЫХ ЩЕЛЕЙ НА НАПРЯЖЕННОЕ СОСТОЯНИЕ ГОРНОГО МАССИВА С ГОРИЗОНТАЛЬНОЙ ВЫРАБОТКОЙ СВОДЧАТОГО СЕЧЕНИЯ

**Авдюшина Е.В.,** канд. физ.-мат. наук, доц., ORCID 0009-0004-4038-9388 ФГБОУ ВО «Донецкий государственный университет», г. Донецк, РФ elena.v.a.2023@mail.ru

Введение. Проведение подземных хозяйственных работ зачастую приводит к появлению подземных выработок в виде полостей с изменением первоначального напряженно-деформированного состояния вблизи этих выработок и появлением около их поверхностей зон выпучивания горных пород. В связи с этим возникает необходимость изучения напряженно-деформированного состояния горных массивов с выработками и проведение разгрузочных щелей из их поверхностей для уменьшения значений напряжений и степени выпучивания горных пород. И здесь наиболее эффективным подходом оказывается решение задачи теории упругости с использованием комплексных потенциалов плоской задачи теории упругости анизотропного тела и обобщенного метода наименьших квадратов.

**Постановка и метод решения задачи.** Рассматривается анизотропный в общем случае массив горных пород, находящийся под действием горного давления, задаваемого усилиями [1]

$$\sigma_x^{\infty} = -\lambda \gamma H, \quad \sigma_y^{\infty} = -\gamma H, \quad \tau_{xy}^{\infty} = 0,$$
 (1)

где H — глубина проведения выработки;  $\lambda$  — коэффициент бокового распора;  $\gamma = \rho g$  — средний удельный вес горной породы с плотностью  $\rho$ ; g — ускорение свободного падения.

Использование комплексных потенциалов плоской задачи теории упругости анизотропного тела позволяет свести рассматриваемую задачу к определению функций  $\Phi_k'(z_k)$   $(k=\overline{1,2})$  обобщенных комплексных переменных  $z_k=x+\mu_k y$ , где  $\mu_k$  — корни известного характеристического уравнения. Конфигурация горного массива представляется многосвязной областью, ограниченной произвольными эллиптическими отверстиями с контурами  $L_l$   $(l=\overline{1,\mathcal{L}})$  и полуосями  $a_l$ ,  $b_l$ , задаваемыми уравнениями

$$x = x_{0l} + x_l \cos \varphi_l - y_l \sin \varphi_l, \quad y = y_{0l} + x_l \sin \varphi_l + y_l \cos \varphi_l,$$
 (2)

где  $x_l = a_l \cos \theta$ ,  $y_l = b_l \sin \theta$ ;  $\theta$  — параметр параметрического задания эллипса в локальной системе координат;  $x_{0l}$ ,  $y_{0l}$  — координаты центра эллипса  $L_l$  в основной системе координат Oxy;  $\phi_l$  — угол между направлениями осей Ox и  $Ox_l$ , отсчитываемый от оси Ox против часовой стрелки.

Для многосвязных областей граничные условия на контурах эллиптических отверстий используются в дифференциальной форме

$$2\operatorname{Re}\sum_{k=1}^{2} (1, \mu_k) \delta_k \Phi_k'(t_k) = (0, 0),$$
(3)

где  $\delta_k = dt_k / ds$ .

Производные комплексных потенциалов после соответствующих конформных отображений можно представить в виде

$$\Phi'_{k}(z_{k}) = \Gamma_{k} - \sum_{l=1}^{\mathcal{L}} \sum_{n=1}^{\infty} \frac{na_{k\ln}}{R_{kl} \zeta_{kl}^{n-1} \left(\zeta_{kl}^{2} - m_{kl}\right)},$$
(4)

где  $a_{kln}$  — неизвестные коэффициенты рядов Лорана, определяемые из граничных условий на частях границы поперечного сечения границы свода;  $\Gamma_k$  — известные постоянные, определяемые из условий (1);  $\zeta_{kl}$  — переменные, определяемые из конформных отображений внешностей единичных кругов  $|\zeta_{kl}| \ge 1$  на внешности соответствующих контуров [2].

Выбирая на каждом из контуров  $L_p$  ( $p=\overline{1,\mathcal{L}}$ ) систему точек  $M_{pm}\big(x_{pm},y_{pm}\big)$  ( $m=\overline{1,M_p}$ ), из граничным условия на контурах отверстий (3) обобщенным методом наименьших квадратов получим переопределенную систему линейных алгебраических уравнений, решением которой являются постоянные  $a_{kln}$ .

Описание результатов численных исследований. Проведены исследования для трансверсально-изотропного алевролита с параметрами  $E_1$ =10740 МПа,  $E_2$ =5230 МПа,  $G_{12}$ =12000 МПа,  $v_{21}$ =0,413. Параметры

сводчатого отверстия (рис. 1): высота крышки свода  $L_1$  2r (полуоси  $a_1$  = 2,5r,  $b_1$  = 2r), где r — масштабная единица длины; длины прямолинейных участков  $L_2$  и  $L_4$  равны 2r (полуоси  $a_2$  =  $a_4$  = r),  $L_3$  равна 5r (полуось  $a_3$  = 2,5r). Проведем разгрузочные наклонные эллиптические щели  $L_{23}$  и  $L_{34}$  с полуосями  $a_{23}$  =  $a_{34}$  из точек пересечения сторон  $L_2$  и  $L_3$ ,  $L_3$  и  $L_4$  основания свода под углом  $\alpha$ .

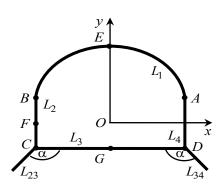



Рис. 1

В таблице для различных углов наклона  $\alpha$  и длин полуосей  $a_{23}$  даны значения напряжений  $\sigma_s / \gamma H$  в зависимости от параметров  $\theta$  параметрических заданий эллипсов  $L_1$ ,  $L_3$ ,  $L_3$ . При этом коэффициент бокового распора принимался равным  $\lambda = 0,7$ .

Таблица 1

| F       |              |                |          |          |          |          | -        | аолица   |  |  |  |
|---------|--------------|----------------|----------|----------|----------|----------|----------|----------|--|--|--|
|         | Ө (рад.)     | $a_{23}$ / $r$ |          |          |          |          |          |          |  |  |  |
| Сторона |              | 0              |          | 0,1      |          | 0,5      |          |          |  |  |  |
| Сторона |              | α              |          | α        |          | $\alpha$ |          |          |  |  |  |
|         |              | $3\pi/4$       | $2\pi/3$ | $3\pi/4$ | $5\pi/6$ | $2\pi/3$ | $3\pi/4$ | $5\pi/6$ |  |  |  |
| $L_1$   | $90\pi/180$  | -1,32          | -1,359   | -1,359   | -1,358   | -1,486   | -1,492   | -1,485   |  |  |  |
|         | $135\pi/180$ | -1,33          | -1,341   | -1,340   | -1,339   | -1,366   | -1,358   | -1,346   |  |  |  |
|         | $179\pi/180$ | -2,44          | -2,406   | -2,397   | -2,387   | -2,244   | -2,152   | -2,060   |  |  |  |
| $L_2$   | $\pi/180$    | -10,38         | -2,312   | -2,704   | -2,435   | -2,117   | -2,038   | -1,938   |  |  |  |
|         | $2\pi/180$   | -5,13          | -2,280   | -2,427   | -2,321   | -2,127   | -2,043   | -1,947   |  |  |  |
|         | $45\pi/180$  | -1,92          | -1,867   | -1,856   | -1,846   | -1,688   | -1,589   | -1,488   |  |  |  |
|         | $90\pi/180$  | -1,81          | -1,720   | -1,692   | -1,667   | -1,379   | -1,193   | -1,006   |  |  |  |
|         | $135\pi/180$ | -2,40          | -1,878   | -1,680   | -1,487   | -0,944   | -0,532   | -0,192   |  |  |  |
|         | $178\pi/180$ | -32,06         | 0,013    | -0,131   | -0,062   | -0,079   | -0,044   | -0,010   |  |  |  |
|         | $179\pi/180$ | -96,44         | 0,565    | -0,793   | -0,705   | -0,108   | -0,211   | -0,053   |  |  |  |
| $L_3$   | $\pi/180$    | -63,87         | 0,329    | -0,314   | -0,745   | -0,090   | -0,065   | 0,029    |  |  |  |
|         | $2\pi/180$   | -23,58         | 0,060    | -0,001   | -0,028   | -0,051   | -0,012   | 0,063    |  |  |  |
|         | $45\pi/180$  | -0,25          | 0,191    | 0,133    | 0,053    | 0,886    | 0,826    | 0,694    |  |  |  |
|         | $90\pi/180$  | 0,11           | 0,227    | 0,216    | 0,198    | 0,713    | 0,653    | 0,555    |  |  |  |

Проведенные исследования показывают, что угол наклона не влияет на значения напряжений около крышки свода  $L_1$ . На боковой поверхности свода при длине разреза  $0.5\,r$  и  $\alpha=5\pi/6$  уменьшаются модули значений напряжений, но при этом увеличивается зона положительных выучивающих напряжений на основании свода. Следовательно, угол  $\alpha=3\pi/4$  является оптимальным для проведения разрезов.

Информация о финансовой поддержке: Исследования проводились в рамках государственного задания (номер госрегистрации 124012400354-0).

- 1. Управление напряженным состоянием породного массива и устойчивостью горных выработок / В. А. Полухин, С. А. Калоеров, Ю. Б. Грядущий, Е. С. Горянская. Донецк: Юго-Восток, 2002. 304 с.
- 2. Калоеров, С. А. Исследование напряженного состояния горного массива с горизонтальной выработкой криволинейного сечения и разгрузочными щелями обобщенным методом наименьших квадратов / С. А. Калоеров, Е. В. Авдюшина, А. Б. Мироненко // Журн. теорет. и прикладной механики. 2024. № 1 (86). С. 61—72. DOI: 10.24412/0136-4545-2024-1-61-72.

# АНАЛИЗ КОМПОНЕНТ БЕЗМОМЕНТНОГО НАПРЯЖЁННОГО СОСТОЯНИЯ ОРТОТРОПНЫХ ПЛАСТИН ПРИ ЛОКАЛЬНЫХ СИЛОВЫХ ВОЗДЕЙСТВИЯХ, РАСПРЕДЕЛЁННЫХ ПО ПЛОЩАДИ ЭЛЛИПСА, НА БАЗЕ {1,0}-АППРОКСИМАЦИИ

**Бондаренко Н.С.**, канд. физ.-мат. наук, доц., ORCID 0000-0001-5254-5545  $\Phi$ ГБОУ ВО «Донецкий государственный университет», г. Донецк, РФ *n.bondarenko123@mail.ru* 

Введение. Тонкостенные элементы конструкций, изготовленные из современных композитных материалов, широко применяются в различных отраслях, где требуется сочетание высокой прочности и малого веса. К областям применения таких элементов конструкций относятся авиа-, ракето-, судо- и автомобилестроение и гражданское строительство. Часто композитные материалы обладают ортотропией упругих свойств и прочностные расчёты пластин, изготовленных ИЗ них, требуют обобщённых теорий, использования позволяющих В отличие классической теории Кирхгофа учитывать явления, обусловленные поперечными сдвигами и обжатием.

**Целью** данной работы является исследование поведения внутренних силовых факторов в случае безмоментного напряжённого состояния ортотропной пластины, подверженной действию локального силового воздействия, распределённого по эллиптической области.

Об актуальности темы исследования свидетельствует ряд современных публикаций, например, работа [1], где представлена математическая модель деформирования структурно ортотропной пластины прямоугольной формы при поперечном изгибе.

**Постановка задачи.** Рассмотрим ортотропную пластину толщины 2h. Срединную плоскость пластины отнесём к безразмерной системе координат  $x_1$ ,  $x_2$ , определённой с точностью до h. В области

$$\Omega = \left\{ \left( x_1, x_2 \right) : \frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} \le 1 \right\}$$
 (1)

действует локальное силовое воздействие интенсивности  $W(x_1, x_2) \equiv 1$ . Система уравнений  $\{1,0\}$ -аппроксимации состоит из [2]:

- уравнений равновесия в перемещениях

$$L_{k1}u + L_{k2}v = -q_k^* \delta(x_1, x_2) \quad (k = 1, 2);$$

$$L_{11} = B_1 \frac{\partial^2}{\partial x_1^2} + B_{12} \frac{\partial^2}{\partial x_2^2}; \quad L_{12} = L_{21} = (v_{21}B_1 + B_{12}) \frac{\partial^2}{\partial x_1 \partial x_2};$$
(2)

$$L_{22} = B_2 \frac{\partial^2}{\partial x_2^2} + B_{12} \frac{\partial^2}{\partial x_1^2}; \quad B_1 = \sqrt{\frac{E_1}{E_2}} \frac{2}{1 - v_{12}v_{21}}; \quad B_2 = \sqrt{\frac{E_2}{E_1}} \frac{2}{1 - v_{12}v_{21}};$$

$$B_{12} = \frac{2G_{12}}{E}; \quad E = \sqrt{E_1 E_2}; \quad q_k^* = \text{const} \quad (k = 1, 2);$$

 $u=u(x_1,x_2),\ v=v(x_1,x_2)$  — обобщённые перемещения;  $E_1,\ E_2$  — модули Юнга для направлений  $x_1,\ x_2$  соответственно;  $G_{12}$  — модуль сдвига, характеризующий изменение угла между главными направлениями  $x_1,\ x_2$ ;  $v_{12},\ v_{21}$  — коэффициенты Пуассона  $(E_2v_{12}=E_1v_{21});$  правые части уравнений (2) соответствуют случаю действия сосредоточенной силы, моделируемой двумерной дельта-функцией Дирака  $\delta(x_1,x_2)$  [3];

- соотношений упругости в перемещениях

$$N_{1} = B_{1} \left( \frac{\partial u}{\partial x_{1}} + v_{21} \frac{\partial v}{\partial x_{2}} \right); \quad N_{2} = B_{2} \left( \frac{\partial v}{\partial x_{2}} + v_{12} \frac{\partial u}{\partial x_{1}} \right); \quad S_{12} = B_{12} \left( \frac{\partial u}{\partial x_{2}} + \frac{\partial v}{\partial x_{1}} \right), \quad (3)$$

где  $N_k = N_k(x_1, x_2)$ ,  $S_{12} = S_{12}(x_1, x_2)$  — обобщённые мембранные усилия, определённые с точностью до значения Eh.

**Методика решения.** Решение задач на локальные воздействия с помощью методов фундаментальных решений основано на использовании формулы свёртки [3], которая для области  $\Omega$  вида (1) примет вид:

$$\mathbf{P}(x_1, x_2) = \int_{-1}^{1} d\theta \int_{-1}^{1} f(\rho, \theta) d\rho;$$
 (4)

$$f(\rho,\theta) = \frac{ab\pi}{4}(\rho+1)\mathbf{P}^{\mathbf{0}}\left(x_1 - \frac{a}{2}(\rho+1)\cos(\pi(\theta+1)), x_2 - \frac{b}{2}(\rho+1)\sin(\pi(\theta+1))\right),$$

где  $\mathbf{P}(x_1, x_2)$  — искомые компоненты НДС, мембранные усилия;  $\mathbf{P^0}$  — фундаментальное решение системы (2), (3), которое имеет вид:

$$N_k = \sum_{j=1}^4 a_{kj} \Phi_j(x_1, x_2) \quad (k=1, 2); \quad S_{12} = \sum_{j=1}^4 a_{3j} \Phi_j(x_1, x_2);$$

функции  $d_1 = D_1$  и коэффициенты  $a_{kj}$  приведены в публикации [4].

Анализ результатов численных исследований. На рис. 1 представлены графики мембранных усилий, представляющие собой результат применения формулы свёртки (4). Все графики построены вдоль оси  $x_2$  при  $x_1 = 0$ . Значения коэффициентов при двумерных дельтафункциях Дирака в правых частях уравнений (2) брались такими:  $q_1^* = q_2^* = 1$ . На рис. 1 для кривых 1 полуось эллипса b = 0.5, для кривых 2 — b = 1, для кривых 3 — b = 2, при этом для всех кривых a = 1. Сплошные линии на рис. 1 соответствуют ортотропному стеклопластику C1-19-55, пунктирные линии — ортотропному стеклопластику C1-10-65 (табл. 1).

Таблица 1

Механические характеристики ортотропных материалов

| Материал               | $v_1$ | 2  | $v_{21}$ | i | $E_1, MH/M^2$    | $G_{12}$ , $MH/M^2$ |
|------------------------|-------|----|----------|---|------------------|---------------------|
| стеклопластик С1-19-55 | 0,1   | 61 | 0,128    |   | $2,5\cdot 10^4$  | $4,3\cdot10^{3}$    |
| стеклопластик С1-10-65 | 0,1   | 7  | 0,122    |   | $3,25\cdot 10^4$ | $6,1\cdot10^{3}$    |

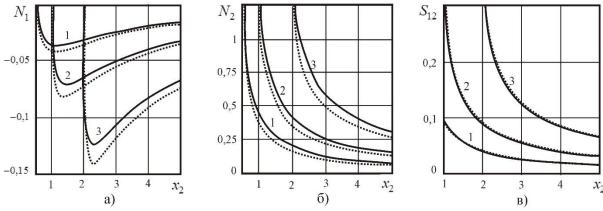



Рис. 1. Мембранные усилия: а —  $N_1$ ; б —  $N_2$ ; в —  $S_{12}$ 

**Заключение.** Проведены численные исследования влияния упругих постоянных ортотропного материала пластины на мембранные усилия, полученные с помощью формулы свёртки для эллиптической области. Наиболее существенное влияние эти постоянные оказывают на мембранные усилия  $N_1$  и  $N_2$  (вплоть до 15 %), тогда как их влияние на внутренний силовой фактор  $S_{12}$  является незначительным.

**Информация о финансовой поддержке:** Исследования проводились в рамках государственного задания (номер госрегистрации 124012400353-3).

- 1. Трещев, А. А. К расчету ортотропной пластины с учетом нелинейной зависимости жесткостных характеристик от вида напряженного состояния / А. А. Трещев, Н. С. Ющенко // Фундаментальные поисковые и прикладные исследования РААСН по научному обеспечению развития архитектуры, градостроительства и строительной отрасли Российской Федерации в 2022-2023 годы: Науч. тр. РААСН: В 2 т., Т. 2. М.: АСВ, 2024. С. 429–437. EDN: IFGRJM.
- 2. Пелех, Б. Л. Слоистые анизотропные пластины и оболочки с концентраторами напряжений / Б. Л. Пелех, В. А. Лазько. Киев : Наукова думка, 1982. 296 с.
- 3. Владимиров, В. С. Уравнения математической физики / В. С. Владимиров. М.: Наука, 1967. 436 с.
- 4. Бондаренко, Н. С. Определение обобщённых усилий в ортотропной пластине в рамках {m,n}-аппроксимации при действии сосредоточенной силы, вызывающей безмоментное напряжённое состояние / Н. С. Бондаренко // Донецкие чтения 2022 : образование, наука, инновации, культура и вызовы современности : Матер. VII Междунар. науч. конф., посвящ. 85-летию Донецкого национального университета (Донецк, 27–28 октября 2022 г.). Т. 1: Механико-математ., компьютерные науки, управление. С. 44–46. EDN UQFQCY.

# ЛОКАЛИЗОВАННЫЕ СДВИГОВЫЕ ВОЛНЫ В СЛОЕ С СИММЕТРИЧНОЙ ПО ТОЛЩИНЕ ДВУХФАКТОРНОЙ НЕОДНОРОДНОСТЬЮ МЕЖДУ ФУНКЦИОНАЛЬНО-ГРАДИЕНТНЫМИ АНИЗОТРОПНЫМИ ПОЛУПРОСТРАНСТВАМИ

*Глухов А.А.*, канд. физ.-мат. наук, ORCID 0009-0002-5536-4410, *Сторожев В.И.*, д-р техн. наук, проф., ORCID 0009-0006-8448-4963, *Фоменко М.В.*, канд. физ.-мат. наук, доц., ORCID 0009-0003-9649-1827 ФГБОУ ВО «Донецкий государственный университет», г. Донецк, РФ *antonglukhov2012@yandex.com* 

Актуальность и цель исследования. Дисперсионные спектры, кинематические и энергетические свойства локализованных упругих волн, распространяющихся вдоль слоя, вмещенного между деформируемыми полупространствами, являются предметом обширного ряда актуальных исследований, последовательно дополняемых учетом в рассматриваемых моделях различных факторов усложнения физико-механических свойств компонентов волновода, вида краевых условий на поверхностях контакта компонентов, типа исследуемых волновых движений, а также учетом специальных аспектов, связанных с прикладной ориентацией реализуемого анализа [1] на проектные расчеты в сферах акустоэлектроники, технологий неразрушающего ультразвукового контроля И геоакустической диагностики. В этой связи, предметом анализа в данной работе является получение дисперсионного соотношения для ранее не исследовавшейся распространения локализованные сдвиговых трансверсально-изотропном слое с двухфакторной одноосной поперечной неоднородностью, расположенном между упругими трансверсальнофункционально-градиентными изотропными полупространствами функциями описываемой двойными экспоненциальными приповерхностной однофакторной неоднородностью.

Постановка и основные соотношения рассматриваемой задачи. Рассматривается пространственное составное упругое тело, которое в нормированных декартовых координатах  $Ox_1x_2x_3$  занимает область

$$V_{\Sigma} = V^{(+)} \cup V \cup V^{(-)},$$

$$V^{(+)} = \{(x_1, x_2) \in \mathbb{R}^2, x_3 > h\}, \quad V^{(-)} = \{(x_1, x_2) \in \mathbb{R}^2, x_3 < -h\},$$

$$V = \{(x_1, x_2) \in \mathbb{R}^2, -h \le x_3 \le h\}.$$

$$(1)$$

В свою очередь полагается, что слой V представлен подобластями

$$V = V^{(++)} \cup V^{(--)},$$

$$V^{(++)} = \{(x_1, x_2) \in \mathbb{R}^2, \ 0 \le x_3 \le h\}, \quad V^{(--)} = \{(x_1, x_2) \in \mathbb{R}^2, -h \le x_3 \le 0\},$$

в которых его материал является трансверсально-изотропным функционально-градиентным материалом с зеркально-симметричной двухфакторной одноосной экспоненциальной поперечной неоднородностью, и в модели распространения локализованных упругих волн SH типа вдоль координатного направления  $Ox_1$  соответственно характеризуется физико-механическими характеристиками

$$c_{ij}(x_3) = c_{Lij0} \exp(\lambda x_3)$$
  $(ij = 44, 66)$ ,  $\rho(x_3) = \rho_{L0} \exp(\mu x_3)$   $x_3 \in [0, h]$ ; (2)  $c_{ij}(x_3) = c_{Lij0} \exp(-\lambda x_3)$   $(ij = 44, 66)$ ,  $\rho(x_3) = \rho_{L0} \exp(-\mu x_3)$   $x_3 \in [-h, 0]$ .

Полупространства  $V^{(+)}$  и  $V^{(-)}$  также являются трансверсально-изотропными зеркально симметричными по свойствам и обладают одноосной однофакторной приповерхностной неоднородностью, соответственно описываемой физико-механическими характеристиками

$$c_{ij+}(x_3) = c_{Hij0} \cdot \phi_+(\eta, \beta, x_3) \ (ij = 44, 66), \quad \rho_+(x_3) = \rho_{H0} \cdot \phi_+(\eta, \beta, x_3), \quad (3)$$

$$\phi_+(\eta, \beta, x_3) = \exp(\eta \exp(-\beta x_3)),$$

$$c_{ij-}(x_3) = c_{Hij0} \cdot \phi_-(\eta, \beta, x_3) \ (ij = 44, 66), \quad \rho_-(x_3) = \rho_{H0} \cdot \phi_-(\eta, \beta, x_3),$$

$$\phi_-(\eta, \beta, x_3) = \exp(\eta \exp(\beta x_3)).$$

Комплексные амплитудные функции исследуемых волн с циклической частотой  $\omega$  и волновым числом k в выделенных компонентах волновода представляются в форме

$$u_{2+}(x_1, x_3, t) = u_{20+}(x_3) \exp(-i(\omega t - kx_1)),$$

$$u_{2++}(x_1, x_3, t) = u_{20++}(x_3) \exp(-i(\omega t - kx_1)),$$

$$u_{2-}(x_1, x_3, t) = u_{20-}(x_3) \exp(-i(\omega t - kx_1)),$$

$$u_{2--}(x_1, x_3, t) = u_{20--}(x_3) \exp(-i(\omega t - kx_1)).$$

$$(4)$$

Алгоритм интегрирования уравнений относительно амплитудных составляющих колебательных волновых перемещений  $u_{20++}(x_3)$ ,  $u_{20--}(x_3)$ 

$$e^{\pm\lambda x_3} (c_{L440} u_{20\pm\pm}''(x_3) \pm c_{L440} \lambda u_{20\pm\pm}'(x_3) - c_{L660} k^2 u_{20\pm\pm}(x_3)) + e^{\pm\mu x_3} \Omega^2 u_{20\pm\pm}(x_3) = 0,$$
(5)

описан в работе [2] и приводит аналитическим представлениям для искомых базисных решений в форме экспоненциальных рядов

$$u_{20\pm\pm}^{(j)}(x_{3}) = e^{\delta_{jL\pm\pm}x_{3}} + \sum_{p=1}^{\infty} A_{pjL\pm\pm} e^{(\delta_{jL\pm\pm}-p\lambda_{L\pm})x_{3}} \quad (j = \overline{1,2}),$$

$$A_{pjL\pm\pm} = \gamma_{L}^{p} \prod_{q=1}^{p} ((\delta_{jL\pm} - q\lambda_{L\pm})^{2} + \alpha_{L\pm}(\delta_{jL\pm} - q\lambda_{L\pm}) + \beta_{L})^{-1},$$

$$\alpha_{L\pm} = \pm \lambda, \quad \beta_{L} = -c_{L660}k^{2} / c_{L440}, \quad \gamma_{L} = -\Omega_{L}^{2} / c_{L440},$$
(6)

$$\Omega_L^2 = \rho_{L0} \omega^2 h_*^2 / c_*, \quad \lambda_{L\pm} = \pm (\lambda - \mu),$$
  
$$\delta_{jL\pm\pm} = -(\alpha_{L\pm} / 2) + (-1)^j ((\alpha_{L\pm} / 2)^2 - \beta_L))^{1/2},$$

 $h_*$ ,  $c_*$  — нормирующие параметры для величин с размерностями упругих перемещений и напряжений. Таким образом, для амплитудных функций  $u_{20\pm\pm}(x_3)$  могут быть записаны выражения, содержащие произвольные постоянные коэффициенты

$$u_{20\pm\pm}(x_3) = C_{1\pm\pm}u_{20+\pm}^{(1)}(x_3) + C_{2\pm\pm}u_{20+\pm}^{(2)}(x_3). \tag{7}$$

Соответственно, выражения амплитудных функций динамических напряжений для составляющих волнового поля в слое имеют вид

$$\sigma_{120\pm\pm}(x_{3}) = ikc_{L660} \exp(\pm\lambda x_{3}) u_{20\pm\pm}(x_{3}) =$$

$$= ikc_{L660} \exp(\pm\lambda x_{3}) (C_{1\pm\pm} u_{20\pm\pm}^{(1)}(x_{3}) + C_{2\pm\pm} u_{20\pm\pm}^{(2)}(x_{3})), \qquad (8)$$

$$\sigma_{230\pm\pm}(x_{3}) = c_{L440} \exp(\lambda x_{3}) u_{20\pm\pm}'(x_{3}) = c_{L440} \exp(\pm\lambda x_{3})$$

$$(C_{1\pm\pm}(u_{20\pm\pm}^{(1)}(x_{3}))' + C_{2\pm\pm}(u_{20\pm\pm}^{(2)}(x_{3}))'),$$

$$(u_{20\pm\pm}^{(j)}(x_{3}))' = \delta_{jL\pm\pm} e^{\delta_{jL\pm\pm}x_{3}} + \sum_{p=1}^{\infty} (\delta_{jL\pm\pm} - p\lambda_{L\pm}) A_{pjL} e^{(\delta_{jL\pm\pm} - p\lambda_{L\pm})x_{3}}.$$

Представления для удовлетворяющих уравнениям

$$-k^{2}c_{H660}u_{20\pm}(x_{3}) \mp c_{H440}\eta \beta e^{\mp\beta x_{3}}u'_{20\pm}(x_{3}) + c_{H440}u''_{20\pm}(x_{3}) + \rho_{H0}\omega^{2}u_{20\pm}(x_{3}) = 0$$

$$(9)$$

и условиям затухания интенсивности волновых движений в глубине  $V^{(+)}$  и  $V^{(-)}$  амплитудных функций динамических перемещений  $u_{20\pm}(x_3)$ , а также напряжений  $\sigma_{230\pm}(x_3)$  в полупространствах  $V^{(+)}$  и  $V^{(-)}$ , получены с применением описанного в работе [3] алгоритма интегрирования в виде

$$u_{20\pm}(x_{3}) = C_{3\pm} \left( e^{\mp \alpha_{H} x_{3}} + \frac{1}{\sum_{n=1}^{\infty} \gamma_{\pm}^{n} \left[ \prod_{p=1}^{n} (\mp \alpha_{H} \mp (p-1)\beta)((\mp \alpha_{H} \mp p\beta)^{2} + \alpha_{H}^{2})^{-1} \right] e^{(\mp \alpha_{H} \mp n\beta)x_{3}} \right), (10)}$$

$$\sigma_{230\pm}(x_{3}) = C_{3\pm} c_{H440} \exp(\eta \exp(\mp \beta x_{3})) u'_{20\pm}(x_{3}),$$

$$\alpha_{H} = (\Omega_{H}^{2} - c_{H660}k^{2}) / c_{H440}, \quad \Omega_{H}^{2} = \rho_{0H}\omega^{2}h_{*}^{2} / c_{*}, \quad \gamma_{\pm} = \pm \eta\beta,$$

$$u'_{20\pm}(x_{3}) = \mp \alpha_{H}e^{\mp \alpha_{H}x_{3}} + \frac{1}{\sum_{p=1}^{\infty} \pi \alpha_{H} \gamma_{\pm}^{n} \left[ \prod_{p=1}^{n} (\mp \alpha_{H} - p\beta)((\mp \alpha_{H} - p\beta)^{2} + \alpha_{H}^{2})^{-1} \right] e^{(\mp \alpha_{H} - n\beta)x_{3}}.$$

Получение дисперсионного соотношения для волн исследуемого типа. Искомые дисперсионные соотношения является следствием подстановки представлений (8), (10) в краевые условия идеального механического контакта слоя и вмещающих полупространств, а также условно выделенных частей слоя

$$\begin{split} u_{20-}(-h) &= u_{20--}(-h)\,, \quad \sigma_{230-}(-h) = \sigma_{230--}(-h)\,, \\ u_{20--}(0) &= u_{20++}(0)\,, \quad \sigma_{230--}(0) = \sigma_{230++}(0)\,, \\ u_{20+}(h) &= u_{20++}(h)\,, \quad \sigma_{230+}(h) = \sigma_{230++}(h)\,. \end{split}$$

Ввиду зеркальной симметрии физико-механических и геометрических свойств рассматриваемого волновода могут быть отдельно исследованы локализованные волны с симметричными антисимметричными И относительно плоскости  $x_3 = 0$  функциями волновых перемещений, для коэффициентов  $C_{1++}$  и  $C_{2++}$  в представлениях которых могут быть получены соотношения связи, вытекающие из краевых условий при  $x_3 = 0$ , в результате чего представления  $u_{20++}(x_3)$  и  $u_{20--}(x_3)$  содержат по одному коэффициенту. Также произвольному ДЛЯ симметричных волн краевые условия при  $x_3 = \pm h$ антисимметричных эквивалентными, и следствием подстановки в них вышеуказанных представлений являются идентичные однородные системы двух линейных алгебраических уравнений относительно двух содержащихся в них произвольных коэффициентов, равенства нулю определителей которой и собой представляют искомые дисперсионные соотношение локализованных волн рассматриваемого типа.

**Информация о финансовой поддержке**: Исследования проводились в ФГБОУ ВО «ДонГУ» в рамках государственного задания (№ госрегистрации 124012400354-0).

- 1. Жаворонок, С. И. Задачи о дисперсии волн в неоднородных волноводах: методы решения (обзор). Часть II / С. И. Жаворонок // Механика композиц. материалов и конструкций. 2022. Т. 28, № 1. С. 36–86. DOI: 10.33113/mkmk.ras.2022.28.01.036\_086.03.
- 2. Сторожев, В. И. Дисперсия нормальных сдвиговых волн в функциональноградиентном трансверсально-изотропном слое / В. И. Сторожев, А. А. Глухов // Вестн. Донец. нац. ун-та. Сер. А. Естеств. науки. 2024. № 1. С. 58–64. DOI: 10.5281/zenodo.12531960. EDN: GCZGRS.
- 3. Болнокин, В. Е. Анализ модели распространения сдвиговых упругих волн в полубесконечном трансверсально-изотропном функционально-градиентном геомассиве / В. Е. Болнокин, А. А. Глухов, В. И. Сторожев // Журн. теорет. и прикладной механики. 2022. № 3 (80). С. 14—19. DOI: 10.24412/0136-4545-2022-3-14-19. EDN: BOBAVC.

## ВЛИЯНИЕ ТРЕЩИН НА КОНЦЕНТРАЦИЮ ТЕМПЕРАТУРНЫХ НАПРЯЖЕНИЙ В ПЛАСТИНКЕ ИЗ ПЬЕЗОМАТЕРИАЛОВ

Глушанков Е.С., канд. физ.-мат. наук ФГБОУ ВО «Донецкий государственный университет», г. Донецк, РФ *ie.glushankov@yandex.ru* 

С использованием комплексных потенциалов теплопроводности и термоэлектромагнитоупругости, конформных отображений и метода наименьших квадратов задача об определении термонапряженного состояния многосвязной пластинки из пьезоматериала с трещинами сведена к решению двух переопределенных систем линейных уравнений. На основе построенного решения проведены численные исследования значений коэффициентов интенсивности напряжений (КИН)  $k_1$ ,  $k_2$  около вершин трещин в пластинках с трещинами различных конфигураций.

Постановка и решение задачи. Рассматривается бесконечная пластинка, изготовленная из пьезоматериала. В пластинке присутствуют дефекты типа прямолинейных трещин с берегами  $L_l$   $(l=\overline{1,\mathcal{L}})$ . Эти трещины могут располагаться произвольно относительно друг друга, в т. ч. пересекаться, образуя трещины более сложной конфигурации. На берегах трещин заданы постоянные значения температуры  $T_l$ , механические и электромагнитные воздействия отсутствуют. На бесконечности действует линейный (однородный) поток тепла, механические и электромагнитные воздействия отсутствуют.

Задачу определения термонапряженного состояния пластинки будем решать в несвязанной постановке: сперва необходимо решить задачу теплопроводности, а затем — задачу термоэлектромагнитоупругости [1]. Для решения указанных задач будем использовать комплексные потенциалы теплопроводности  $F_5(z_5)$  и термоэлектромагнитоупругости  $\Phi_k(z_k)$   $(k=\overline{1,4})$ , являющиеся функциями обобщенных комплексных переменных

$$z_k = x + \mu_k y \ (k = \overline{1, 5}), \tag{1}$$

где  $\mu_5$  и  $\mu_k$  ( $k=\overline{1,4}$ ) — корни характеристических уравнений плоских задач тепловодности и термоэлектромагнитоупругости соответственно [1]. Тогда общая задача сводится к последовательному определению этих комплексных потенциалов из граничных условий соответствующих задач.

Функции  $F_5(z_5)$  и  $\Phi_k(z_k)$  определяются в многосвязных областях  $S_5$  и  $S_k$  соответственно, получаемых из области S, занимаемой пластинкой, аффинными преобразованиями (1). Эти функции имеют вид [1]

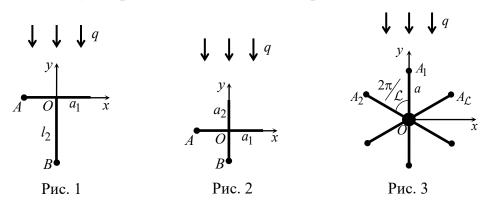
$$F_5(z_5) = c_5 + \sum_{l=1}^{\mathcal{L}} D_{5l} w_{5l}(z_5) + \sum_{l=1}^{\mathcal{L}} \sum_{n=1}^{\infty} c_{5ln} \varphi_{5ln}(z_5), \qquad (2)$$

$$\Phi_k(z_k) = N_k(z_k) + \sum_{l=1}^{\mathcal{L}} \sum_{n=1}^{\infty} a_{kln} \varphi_{kln}(z_k), \qquad (3)$$

где  $c_5$ ,  $D_{5l}$ ,  $c_{5ln}$  — неизвестные постоянные, которые определяются из граничных условий задачи теплопроводности;  $a_{kln}$  — неизвестные постоянные, которые определяются из граничных условий задачи термоэлектромагнпитоупругости;  $w_{5l}(z_5)$ ,  $\phi_{5ln}(z_5)$ ,  $N_k(z_k)$ ,  $\phi_{kln}(z_k)$  — известные функции.

Неизвестные постоянные  $c_5$ ,  $D_{5l}$ ,  $c_{5ln}$ ,  $a_{kln}$  можно определить с помощью метода наименьших квадратов. Для этого на берегах каждой из трещин  $L_j$  ( $j=\overline{1,\mathcal{L}}$ ) выбирается система из  $\mathcal{M}_j$  «коллокационных» точек  $M_{jm}(x_{jm},y_{jm})$  ( $m=\overline{1,\mathcal{M}_j}$ ). После подстановки точек в граничные условия соответствующих задач для определения этих постоянных получаются системы линейных алгебраических уравнений [1]

$$2c_{5} + 2\operatorname{Re}\sum_{l=1}^{\mathcal{L}} w_{5l}(\tau_{5jm})D_{5l} + 2\operatorname{Re}\sum_{l=1}^{\mathcal{L}}\sum_{n=1}^{\infty} \varphi_{5ln}(\tau_{5jm})c_{5ln} = T_{j}$$


$$(j = \overline{1, \mathcal{L}}, \quad m = \overline{1, \mathcal{M}_{j}}); \tag{4}$$

$$2\operatorname{Re}\sum_{k=1}^{4}\sum_{l=1}^{\mathcal{L}}\sum_{n=1}^{\infty}d_{kjp}\delta_{k,s}(\tau_{kjm})\phi_{kln}'(\tau_{kjm})a_{kln}=-2\operatorname{Re}\sum_{k=1}^{4}d_{kjp}\delta_{k,s}(\tau_{kjm})N_k'(\tau_{kjm})-2\operatorname{Re}d_{5jp}\delta_{5,s}(\tau_{5jm})r_5F_5(\tau_{5jm})\;(j=\overline{1,\mathcal{L}}\;,\;m=\overline{1,\mathcal{M}_j}\;,\;p=\overline{1,4}\;);$$
 (5)  $d_{kjp}$  — известные постоянные, определяемые типом граничных условий;  $\tau_{kjm}=x_{jm}+\mu_k y_{jm}\;(k=\overline{1,5}\;).$  После нахождения псевдорешений систем (4) и (5) методом сингулярного разложения постоянные  $c_5\;,\;D_{5l}\;,\;c_{5ln}\;,\;a_{kln}\;,\;a_{kln}\;$ , а, следовательно, и комплексные потенциалы становятся известными и можно вычислять значения основных характеристик температурного поля и термоэлектромагнитоупругого состояния в любой точке пластинки по известным формулам [1], а у вершин трещин — также коэффициенты

Описание результатов численных исследований. Исследования проводились для пластинок из композитного материала  $BaTiO_3 - CoFe_2O_4$  [1] с Т-образной (рис. 1), крестообразной (рис. 2), звездообразной (рис. 3) трешинами. При этом, решалась задача термоэлектромагнитоупругости (учитываются все свойства материала пластинки) и задача термоупругости (не учитываются электромагнитные свойства материала).

интенсивности напряжений, индукций и напряженностей [1, 2].

Для случая Т-образной трещины установлено, что при относительно малых значениях длин «ножки» либо «шляпки» значения КИН соответственно у вершины A либо B (рис. 1) мало отличается от



соответствующих значений для случая пластинки с одной трещиной, тогда как у другой вершины значения КИН очень малы. В случае задания значений температуры, при возрастании значений длины «ножки» значения КИН у вершины A сильно возрастают, однако ещё сильнее возрастают значения  $k_1^-$  у вершины B. В этом случае «шляпку» можно представить как «расщепление» в вершине «ножки». Характер значений КИН у вершины A, принадлежащей «расщеплению», коренным образом отличается от такового у вершины B трещины, из чего следует, что появление «расщепления» в одной из вершин трещины приводит к значительным изменениям ТЭМУС в окрестности этой вершины. Во всех случаях для вершины B  $k_2^-=0$ .

У вершин крестообразной трещины характер изменения КИН отличается от такового у вершин Т-образной трещины. Так, для вершины A горизонтальной составляющей (рис. 2) только КИН  $k_2^-$  отличен от нуля, а для вершины B вертикальной составляющей — только КИН  $k_1^-$ . При этом, для вершин, противоположных вершинам A и B,  $k_2^+ = -k_2^-$  и  $k_1^+ = -k_1^-$ . Когда одна из составляющих трещин обладает малой длиной, значения КИН для вершин более длинной трещины мало отличаются от таковых для случая пластинки с одной трещиной. Рост длины одной из трещин приводит к росту КИН во всех вершинах.

Для случая крестообразной трещины установлено, что значения  $k_1^+$  у вершины  $A_1$  (рис. 3) незначительно возрастают с увеличением количества лучей.

**Информация о финансовой поддержке:** Исследования проводились в рамках государственного задания (номер госрегистрации 124012400354-0).

#### Список литературы

- 1. Калоеров, С. А. Действие линейного потока тепла в пьезопластинках с отверстиями и трещинами / С. А. Калоеров, Е. С. Глушанков // Вестн. Донец. нац. ун-та. Сер. А: Естеств. науки. 2018. № 1. С. 15–26.
- 2. Калоеров, С. А. Определение коэффициентов интенсивности напряжений, индукции и напряженности для многосвязных электроупругих сред / С. А. Калоеров // Прикладная механика. 2007. Т. 43, № 6. С. 56–62.

УДК 539.3:534.1

# ОКРУЖНЫЕ ИЗГИБНЫЕ ВОЛНЫ В КОЛЬЦЕВОЙ ПЛАСТИНЕ НА ДВУХПАРАМЕТРИЧЕСКОМ УПРУГОМ ОСНОВАНИИ

## $\Gamma$ лущенко $A.B.^1$ ,

Пачева М.Н.<sup>1</sup>, канд. физ.-мат. наук, доц., ORCID 0009-0004-4919-8297, Сторожев В.И.<sup>1</sup>, д-р техн. наук, проф., ORCID 0009-0006-8448-4963, Сторожев С.В.<sup>1,2</sup>, д-р техн. наук, доц., ORCID 0000-0002-4198-3491 ФГБОУ ВО «Донецкий государственный университет», г. Донецк, РФ <sup>2</sup>«Донбасская национальная академия строительства и архитектуры» − филиал ФГБОУ ВО «Национальный исследовательский Московский государственный строительный университет», г. Макеевка, ДНР, РФ расheva.m.n@mail.ru

Актуальность и цели исследования. Теоретический анализ процессов распространения изгибных волн деформаций в тонких пластинах концентрической кольцевой геометрии представляет интерес как в фундаментальном аспекте, так и в связи с широким спектром приложений в прочностных расчетах деталей машин, приборов и строительных сооружений, при разработке технологий и устройств ультраакустической дефектоскопии, при проектировании компонентов устройств К числу рассмотренных прикладных моделей акустоэлектроники [1]. волноводов данного типа принадлежат, частности, В модели нормальных окружных волн изгиба в кольцевых распространения пластинах, полностью либо частично лежащих на упругом основании винклеровского типа. При этом, как отмечено в работе [2], более адекватным вариантом модели упругого основания является двухпараметрическая модель, учитывающая не только кинетическую и потенциальную энергии изгибных колебаний, но и кинетическую энергию, обусловленную инерцией вращения элементов пластины при изгибе (модель упругого основания Пастернака). В данном контексте, целью исследований является получение представляемых дисперсионного соотношения для волн изгиба, распространяющихся вдоль окружного углового направления в тонкой изотропной пластине концентрической кольцевой геометрии на двухпараметрическом упругом основании с жестко закрепленными внутренним и внешним контурами, динамическое деформирование которой описывается прикладной моделью Кирхгоффа.

Постановка и основные соотношения рассматриваемой задачи. Полагается, что срединная плоскость рассматриваемой тонкой изотропной кольцевой пластины толщины h занимает в нормированных полярных координатах  $Or\theta$  область

$$S = \{R_1 \le r \le R_2, 0 \le \theta < 2\pi\},\$$

и соотношения краевой задачи о распространении в ней окружных волн изгибных деформаций включают записываемое в обозначениях работы [2] уравнение волновых колебаний

$$[((\lambda + 2\mu)h^3 / 12)\Delta_{r\theta}\Delta_{r\theta} - k_2\Delta_{r\theta} - (\rho h^3 / 12)(\partial^2 / \partial t^2)\Delta_{r\theta} + \rho h(\partial^2 / \partial t^2) + k_1]w(r, \theta, t) = 0$$
(1)

и краевые условия на жестко закрепленных внутреннем и внешнем контурах

$$(w)_{r=R_1} = (\partial w / \partial r)_{r=R_1} = (w)_{r=R_2} = (\partial w / \partial r)_{r=R_2} = 0$$
 (2)

В соотношениях (1) (2)  $w(r,\theta,t)$  — комплексная функция динамических волновых прогибов;  $\Delta_{r\theta} = \partial^2 / \partial r^2 + r^{-1} \partial / \partial r + r^{-2} \partial^2 / \partial \theta^2$  — двумерный оператор Лапласа в полярных координатах; t — время;  $\lambda$ ,  $\mu$ ,  $\rho$  — соответственно параметры Ламе и плотность материала пластины;  $k_1$  и  $k_2$  — соответственно параметры свойств пастели на сжатие и сдвиг. Для комплексной функции колебательных изгибных перемещений в исследуемых окружных гармонических волнах с круговой частотой  $\omega$  и волновым числом k вводится представление

$$w(r, \theta, t) = w_0(r) \exp(-i(\omega t - k\theta)), \tag{3}$$

при подстановке которого в (1) данное уравнение приводится к виду

$$(\Delta_r + \eta_1^2)(\Delta_r + \eta_2^2)w_0(r) = 0$$
,  $\Delta_r = \partial^2 / \partial r^2 + r^{-1}\partial / \partial r - k^2 r^{-2}$ , (4)

где величины  $\eta_{j}^{2}$  ( j = 1, 2 ) имеют выражения

$$\eta_{j}^{2} = \delta + (-1)^{j} (\delta^{2} - \gamma)^{1/2}, \quad \delta = ((12k_{2}h^{-3} - \rho\omega^{2})/(2(\lambda + 2\mu)),$$

$$\gamma = 12(k_{1} - \rho h\omega^{2})/((\lambda + 2\mu)h^{3}). \tag{5}$$

Получение дисперсионного соотношения для волн исследуемого типа. Удовлетворяющая уравнению (4) амплитудная функция  $w_0(r)$  может быть представлена в виде комбинации цилиндрических бесселевых функций с произвольными постоянными коэффициентами

$$w_0(r) = C_1 J_k(\eta_1 r) + C_2 Y_k(\eta_1 r) + C_3 J_k(\eta_2 r) + C_4 Y_k(\eta_2 r),$$
 (6)

и при подстановке (6) в краевые условия (2) с учетом соотношений дифференцирования цилиндрических функций

$$\partial / \partial r (J_k(\eta_i r)) = (\eta_i / 2)(J_{k-1}(\eta_i r) - J_{k+1}(\eta_i r)) = \alpha_i(r),$$
 (7)

$$\partial / \partial r (Y_k(\eta_j r)) = (\eta_j / 2)(Y_{k-1}(\eta_j r) - Y_{k+1}(\eta_j r)) = \beta_j(r),$$

для неопределенных коэффициентов  $C_p \ (p=1,4)$  формулируется однородная система линейных алгебраических уравнений

$$C_p \left\| \vartheta_{qp}(k,\omega) \right\| = 0 \quad (q,p=\overline{1,4}),$$

равенство нулю определителя которой и представляет собой искомое дисперсионное соотношение

$$F(k,\omega) = \det \left\| \vartheta_{qp}(k,\omega) \right\| = 0 \quad (q, p = \overline{1,4}). \tag{8}$$

В соотношениях (8)

$$\begin{split} \vartheta_{11}(k,\omega) &= J_k(\lambda_1 R_1) \,, \quad \vartheta_{12}(k,\omega) = Y_k(\lambda_1 R_1) \,, \quad \vartheta_{13}(k,\omega) = J_k(\lambda_2 R_1) \,, \\ \vartheta_{14}(k,\omega) &= Y_k(\lambda_2 R_1) \,, \end{split}$$

$$\begin{split} \vartheta_{21}(k,\omega) &= \alpha_1(R_1), \ \, \vartheta_{22}(k,\omega) = \beta_1(R_1), \ \, \vartheta_{23}(k,\omega) = \alpha_2(R_1), \ \, \vartheta_{24}(k,\omega) = \beta_2(R_1), \\ \vartheta_{31}(k,\omega) &= J_k(\lambda_1 R_2), \ \, \vartheta_{32}(k,\omega) = Y_k(\lambda_1 R_2), \ \, \vartheta_{33}(k,\omega) = J_k(\lambda_2 R_2), \\ \vartheta_{34}(k,\omega) &= Y_k(\lambda_2 R_2), \\ \vartheta_{41}(k,\omega) &= \alpha_1(R_2), \ \, \vartheta_{42}(k,\omega) = \beta_1(R_2), \ \, \vartheta_{43}(k,\omega) = \alpha_2(R_2), \\ \vartheta_{44}(k,\omega) &= \beta_2(R_2). \end{split}$$

Искомый параметр волнового числа k входит в дисперсионное уравнение (8) как индексная величина специальных цилиндрических функций.

Анализ полученного уравнения может включать использование прямых расчетных алгоритмов поиска действительных, мнимых и комплексных корней трансцендентных уравнений [3–6], а также получение и исследование модификаций (8) с применением асимптотических представлений цилиндрических бесселевых функций при больших относительных значениях аргументов (в высокочастотной длинноволновой области) и при больших относительных значениях индексного параметра (в низкочастотной коротковолновой области).

**Информация о финансовой поддержке**: Исследования проводились в  $\Phi \Gamma EOVBO$  «Дон $\Gamma V$ » в рамках государственного задания (N2 госрегистрации 124012400354-0).

#### Список литературы

- 1. Тютекин, В. В. Волноводные свойства плоской кольцевой пластины. І. Изгибные волны. / В. В. Тютекин // Акуст. журн. 2003. Т. 49, № 6. С. 843–851.
- 2. Ерофеев, В. И. Дисперсионные и энергетические характеристики изгибных волн в пластине, лежащей на двухпараметрическом упругом основании / В. И. Ерофеев, Е. Е. Лисенкова // Акуст. журнал. 2023. Т. 69, № 3. С. 277—283. DOI: 10.31857/S0320791922600342.
- 3. Дубяго, Л. В. Дисперсионный спектр упругих волн изгиба вдоль окружного направления в тонкой изотропной кольцевой пластине с жестко закрепленными либо шарнирно опертыми краями / Л. В. Дубяго, В. И. Сторожев // Журн. теорет. и прикладной механики. 2019. № 4 (69). С. 48–56.

- 4. Болнокин, В. Е. Моды изгибных упругих волн в окружном направлении изотропной кольцевой пластины на упругом основании / В. Е. Болнокин, В. И. Сторожев, Л. В. Дубяго // Донецкие чтения 2020: образование, наука, инновации, культура и вызовы современности: матер. V Междунар. науч. конф. (Донецк, 17–18 ноября 2020 г.). Т. 1: Физико-математические и технические науки. Ч. 1 / под общ. ред. проф. С.В. Беспаловой. Донецк: Изд-во ДонНУ, 2020. С. 35–37.
- 5. Глущенко, А. В. Нормальные окружные волны изгиба в частично лежащей на упругом основании кольцевой пластине / А. В. Глущенко, Л. В. Дубяго, М. Н. Пачева, В. И. Сторожев // Донецкие чтения 2023: образование, наука, инновации, культура и вызовы современности: матер. VIII Междунар. науч. конф. (Донецк, 25–27 октября 2023 г.). Т. 1: Механико-математические, компьютерные и химические науки, управление / под общ. ред. проф. С.В. Беспаловой. Донецк: Изд-во ДонГУ, 2023. С. 58–60.
- 6. Глущенко, А. В. Окружные нормальные изгибные волны в кольцевой пластине с двумя разнородными концентрическими составляющими / А. В. Глущенко, Л. В. Дубяго, С. В. Сторожев, В. А. Шалдырван // Вестн. Донец. нац. ун-та. Сер. А: Естеств. науки. 2023. № 1. С. 12–20.

УДК 539.3

# КОМПЬЮТЕРНАЯ МОДЕЛЬ СОСРЕДОТОЧЕННОГО ВОЗДЕЙСТВИЯ ПОПЕРЕЧНОЙ СИЛЫ НА ОРТОТРОПНЫЕ ПЛАСТИНЫ

Гольцев А.С.<sup>1</sup>, д-р физ.-мат. наук, проф., ORCID 0009-0007-7340-6270, **Чехов В.Н.**<sup>2</sup>, д-р физ.-мат. наук, проф., ORCID 0000-0001-8236-3419 <sup>1</sup> ФГБОУ ВО «Донецкий государственный университет», г. Донецк, РФ <sup>2</sup> ФГБОУ ВО «Крымский федеральный университет им. В.И. Вернадского», г. Симферополь, РФ asgoltsev@mail.ru

**Введение.** Тонкостенные элементы конструкций, используются во многих современных аппаратах, приборах и установках. Механические воздействия на данные элементы являются наиболее распространённой нагрузкой. При этом расчёт на сосредоточенные силы представляет собой непростую задачу. Этим и обусловлена актуальность рассматриваемой задачи.

**Цель публикации** — описать математическую и компьютерную модель сосредоточенного силового воздействия поперечной силы на ортотропные пластины. Описана методика визуализации распределения моментов и поперечных усилий в локальной области места сосредоточенного воздействия.

**Основная часть.** Рассмотрим тонкую ортотропную пластину толщиной h, нагруженную сосредоточенной поперечной силой. Начало

декартовой системы координат в срединной плоскости расположим в точке приложения сосредоточенного воздействия, которое находится на значительном удалении от внешнего граничного контура. Используем классическую теорию ортотропных пластин и оболочек [1]. В случае действия лишь поперечной нагрузки (Z) необходимо рассматривать задачу изгиба для пластин. Разрешающее уравнение задачи изгиба ортотропных пластин в безразмерной системе координат ( $Ox_1x_2$ ), определённой с точностью до величины h, имеет следующий вид:

$$D_1 \frac{\partial^4 w}{\partial x_1^4} + D_3 \frac{\partial^4 w}{\partial x_1^2 \partial x_2^2} + D_2 \frac{\partial^4 w}{\partial x_2^4} = Z, \tag{1}$$

где

$$D_1 = \kappa D$$
,  $D_2 = \kappa^{-1}D$ ,  $D_3 = \nu_2 D_1 + \nu_1 D_2 + \frac{1}{3}G$ ,  $D = 1/\{12(1 - \nu_1 \nu_2)\}$ ,  $G = G_{12}/E$ ,  $E = \sqrt{E_1 E_2}$ ,  $\kappa = \sqrt{E_1/E_2}$ ,

w — безразмерный прогиб; Z — усилие вдоль координатной оси  $x_3$ , определённое с точностью до множителя E;  $E_1$ ,  $E_2$ ,  $G_{12}$ ,  $V_1$ ,  $V_2$  — модули Юнга, модуль сдвига и коэффициенты Пуассона для главных направлений.

В случае действия единичной поперечной сосредоточенной силы нагрузка определяется формулой

$$Z = \delta(x_1, x_2), \tag{2}$$

где  $\delta(x_1, x_2)$  – дельта-функция Дирака.

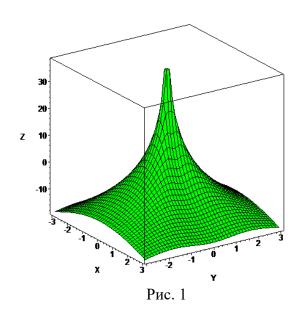
Решение дифференциального уравнений (1) с правой частью (2) находится с помощью двумерного интегрального преобразования Фурье. В пространстве трансформант решается алгебраическое уравнение и находится трансформанта перемещения  $\tilde{w}$ . С её помощью определяются трансформанты изгибающих  $\tilde{M}_1$ ,  $\tilde{M}_2$  и крутящего  $\tilde{H}$  моментов, а также трансформанты перерезывающих сил  $\tilde{Q}_1$ ,  $\tilde{Q}_2$ . К ним применяется процедура обращения. В качестве примера приведена структура полученного решения для изгибающего момента  $M_1$ , крутящего момента H и перерезывающей силы  $Q_1$  в полярной системе координат  $(r, \phi)$ .

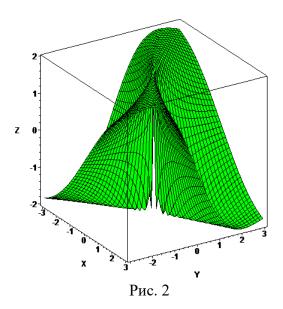
$$M_{1}(r,\varphi) = -\frac{D_{1}}{\pi^{2}} F_{M1}(0) \ln \frac{\gamma r}{2} + \frac{D_{1}}{\pi^{2}} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} \cos 2n\varphi \cdot F_{M1}(n),$$

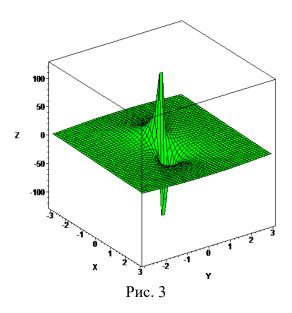
$$F_{M1}(n) = \int_{0}^{\pi/2} \frac{f_{m1}(\theta)}{f_{D}(\theta)} \cos 2n\theta d\theta, \qquad f_{m1}(\theta) = \cos^{2}\theta + v_{2} \sin^{2}\theta;$$

$$H(r,\varphi) = \frac{G}{6\pi^{2}} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} \sin 2n\varphi \cdot F_{H}(n),$$

$$F_H(n) = \int_0^{\pi/2} \frac{f_h(\theta)}{f_D(\theta)} \sin 2n\theta d\theta, \qquad f_h(\theta) = \cos \theta \sin \theta;$$


$$Q_1(r, \varphi) = \frac{-2}{\pi^2} \frac{1}{r} \sum_{n=0}^{\infty} (-1)^n F_{Q1}(n) \cos(2n+1) \varphi,$$


$$F_{Q1}(n) = \int_{0}^{\pi/2} \frac{\cos\theta f_{q1}(\theta)}{f_D(\theta)} \cos(2n+1)\theta d\theta, \quad f_{q1}(\theta) = d_1 \cos^2\theta + d_2 \sin^2\theta,$$


где  $\ln \gamma = 0.5772...$  – постоянная Эйлера ( $\gamma = 1.781072418...$ ),

$$f_D(\theta) = D_1 \cos^4 \theta + D_3 \cos^2 \theta \sin^2 \theta + D_2 \sin^4 \theta,$$
  
 $d_1 = D_1, \qquad d_2 = v_2 D_1 + G/6.$ 

Из представленной структуры следует, что полученное решение для окрестности изгибающего момента  $M_1$ В точки приложения обладает особенностью сосредоточенного усилия  $\ln r$ , a для перерезывающего усилия –  $r^{-1}$ . Для визуализации распределения рассмотренных внутренних силовых факторов используется команда PLOT3D и графическая структура трёхмерной графики типа GRID системы компьютерной математики Maple. На рисунках  $M_1$ , H и перерезывающей распределение моментов соответственно. Значения моментов даны с точность до множителя  $\mathit{Eh}^2$ , перерезывающей силы — Eh, X и Y — безразмерные координаты.







**Заключение.** Построена компьютерная модель результатов сосредоточенного воздействия поперечной силы в ортотропной пластине.

**Информация о финансовой поддержке:** Исследование проводилось в рамках государственного задания (номер госрегистрации 124012400353-3).

# Список литературы

1. Амбарцумян, С. А. Общая теория анизотропных оболочек / С. А. Амбарцумян. – М.: Наука, 1974. – 448 с.

УДК 539.3:534.1

# БАЗИСНЫЕ РЕШЕНИЯ В ЗАДАЧЕ О РАСПРОСТРАНЕНИИ НЕОСЕСИММЕТРИЧНЫХ НОРМАЛЬНЫХ ВОЛН В ПРОТЯЖЕННЫХ ИЗОТРОПНЫХ ФУНКЦИОНАЛЬНО-ГРАДИЕНТНЫХ ЦИЛИНДРАХ КОЛЬЦЕВОГО СЕЧЕНИЯ

Дзундза А.И.<sup>1</sup>, д-р пед. наук, проф., ORCID 0000-0003-1950-3735, Моисеенко В.А.<sup>2</sup>, канд. физ.-мат. наук, доц., ORCID 0000-0002-8576-7272, Моисеенко И.А.<sup>1</sup>, д-р физ.-мат. наук, доц., ORCID 0000-0001-9115-7801 <sup>1</sup> ФГБОУ ВО «Донецкий государственный университет», г. Донецк, РФ <sup>2</sup>«Донбасская национальная академия строительства и архитектуры» — филиал ФГБОУ ВО «Национальный исследовательский Московский государственный строительный университет», г. Макеевка, ДНР, РФ miamia733@mail.ru

Для единого экспоненциально-степенного закона радиальной неоднородности материала волновода построены в аналитическом виде базисные наборы частных решений уравнений модели в случае изотропного [1], трансверсально-изотропного [2] и ортотропного [3]

материалов. В работе с использованием предложенных специальных моделей радиальной неоднородности изотропного материала, свободных от ограничений на вид функциональных законов, построены базисные наборы аналитических частных решений уравнений модели ДЛЯ неосесимметричных нормальных волн, распространяющихся протяженных полых цилиндрах.

Исследованию подлежат неосесимметричные нормальные упругие волны с круговой частотой  $\omega$  и продольным волновым числом k ( $k \in \mathbb{C}$ ), распространяющиеся в изотропном протяженном полом цилиндре. Волновод имеет в поперечном сечении форму концентрического кругового кольца с внутренним  $R_1$  и внешним  $R_2$  радиусами. Рассматривается безразмерная цилиндрическая система координат  $Or\theta z$ , нормированная  $R_* = (R_1 + R_2)/2$ . Волновод занимает  $V = \{r \in [1-h, 1+h], \theta \in [-\pi, \pi], z \in (-\infty, \infty)\},$  где  $h = (R_2 - R_1)/(R_1 + R_2).$ Материал волновода считается функционально радиально неоднородным

$$\lambda(r) = C_* \tilde{\lambda}(r), \quad \mu(r) = C_* \tilde{\mu}(r), \quad \rho(r) = \rho_* \tilde{\rho}(r).$$

Здесь  $C_* = \text{const}$  и  $\rho_* = \text{const}$  имеют размерность соответственно упругих модулей Ламе и плотности. Полагается, что функциональные законы

$$\tilde{\lambda}(r) > 0, \quad \tilde{\mu}(r) > 0, \quad \tilde{\rho}(r) > 0 \quad (r \in [1-h, 1+h])$$
 (1)

относятся к классу  $C^{2}(1-h,1+h)$ .

Вводится замена переменных r = 1 + hx, где  $x \in [-1,1]$  — обобщенная кольцевая координата [5]. Соотношения (1) в новой системе координат  $Ox\theta z$  получают вид

$$\tilde{\lambda} = \tilde{\lambda}(x) > 0, \quad \tilde{\mu} = \tilde{\mu}(x) > 0, \quad \tilde{\rho} = \tilde{\rho}(x) > 0 \quad (x \in [-1,1]).$$
 (2)

Пространственная линейная математическая модель динамики для исследуемого типа волн допускает разделение переменных. В векторно-матричной форме соотношения модели записаны так:

$$\mathbf{U}(x,\theta,z,t) = \exp(-i\omega t + ikz) \mathbf{P}_{U} \mathbf{T}_{U}^{(\tau)}(\theta) \tilde{\mathbf{U}}^{(\tau)}(x),$$

$$\mathbf{\Sigma}(x,\theta,z,t) = \exp(-i\omega t + ikz) \mathbf{P}_{\Sigma} \mathbf{T}_{\Sigma}^{(\tau)}(\theta) \tilde{\mathbf{\Sigma}}^{(\tau)}(x),$$
(3)

где  $\tilde{\mathbf{U}}^{( au)}(x)$  и  $\tilde{\mathbf{\Sigma}}^{( au)}(x)$  – вектор-столбцы с вещественными радиальными амплитудными составляющими соответствующих компонент волнового процесса;  $\mathbf{T}_U^{(\tau)}(\theta)$  и  $\mathbf{T}_\Sigma^{(\tau)}(\theta)$  – вещественные диагональные матрицы функциональной зависимости целевого решения от угловой координаты [4];  $\mathbf{P}_U$  и  $\mathbf{P}_\Sigma$  – диагональные матрицы комплексной нормировки [4]. Векторные функции  $\tilde{\mathbf{U}}^{(\tau)}(x)$  и  $\tilde{\mathbf{\Sigma}}^{(\tau)}(x)$  связаны между собой соотношением

$$\tilde{\mathbf{\Sigma}}^{(\tau)}(x) = \tilde{\mathbf{G}}(x)\tilde{\mathbf{M}}^{(\tau)}(x) \cdot \tilde{\mathbf{U}}^{(\tau)}(x), \tag{4}$$

где  $\tilde{\mathbf{G}}(x)$  — матрица-функция закона Гука;  $\tilde{\mathbf{M}}^{(\tau)}(x)$  — матричный дифференциальный оператор размерности  $6\times 3$  с элементами

$$\left[\tilde{\mathbf{M}}^{(\tau)}(x)\right]_{11} = h^{-1}d_x, \quad \left[\tilde{\mathbf{M}}^{(\tau)}(x)\right]_{21} = (1+hx)^{-1}, \dots$$

Уравнения движения преобразуются к виду

$$\tilde{\mathbf{D}}^{(\tau)}(x) \cdot \tilde{\mathbf{U}}^{(\tau)}(x) = \mathbf{O}, \qquad (5)$$

где  $\tilde{\mathbf{D}}^{(\tau)}(x)$  — матричный дифференциальный оператор размерности  $3 \times 3$  с элементами

$$\left[\tilde{\mathbf{D}}^{(\tau)}(x)\right]_{mm} = d_x^2 + \tilde{f}_{mm}^{(1)}(x)d_x + \tilde{f}_{mm}^{(2)}(x) \quad (m = \overline{1,3}), 
\left[\tilde{\mathbf{D}}^{(\tau)}(x)\right]_{mn} = \tilde{f}_{mn}^{(1)}(x)d_x + \tilde{f}_{mn}^{(2)}(x) \quad (m \neq n = \overline{1,3}), 
\tilde{f}_{11}^{(1)}(x) = \frac{h}{1+hx} + \frac{\lambda'(x) + 2\mu'(x)}{\lambda(x) + 2\mu(x)} \dots$$

Вводятся в рассмотрение декартова система координат Oxy и комплексная переменная  $\xi = x + iy$ . Формально полагается, что оси Ox систем координат  $Ox\theta z$  и Oxy совпадают. Рассматриваются два подхода к построению целевого базисного набора частных решений уравнения (5).

Аналитический подход применяется в случае, когда  $\tilde{\lambda}(x)$ ,  $\tilde{\mu}(x)$ ,  $\tilde{\rho}(x)$  допускают аналитическое продолжение на плоскость комплексной переменной  $\xi$  в аналитические в некоторой области  $|\xi| < \delta \ (\delta > 1)$  функции.

Для реализации численного подхода вводятся произвольные функции  $\varphi(\xi)$  и  $\psi_j(\xi)$   $\left(j=\overline{1,2}\right)$ , аналитические в некоторой области  $|\xi|<\delta$   $(\delta>1)$ . Законы радиальной неоднородности (2) через введенные функции переопределяются двумя альтернативными способами:

$$\tilde{\lambda}(x) = (1 - 2\psi_1(x))e^{\varphi(x)}, \quad \tilde{\mu}(x) = \psi_1(x)e^{\varphi(x)},$$

$$\tilde{\rho}(x) = \psi_2(x)e^{\varphi(x)} \quad (x \in [-1,1]); \quad (6-A)$$

$$\tilde{\lambda}(x) = \psi_1(x) e^{\varphi(x)}, \quad \tilde{\mu}(x) = e^{\varphi(x)}, \quad \tilde{\rho}(x) = \psi_2(x) e^{\varphi(x)} \quad (x \in [-1,1]).$$
 (6-b)

Для аналитического подхода, а также для основанного на альтернативных вариантах модели неоднородности (6-A) либо (6-Б) численного подхода рассматривается аналитическое продолжение на плоскость комплексной переменной  $\xi$  уравнения (5) в уравнение

$$\tilde{\mathbf{D}}^{(\tau)}(\xi) \cdot \tilde{\mathbf{U}}^{(\tau)}(\xi) = \mathbf{O} \quad (|\xi| < \delta). \tag{7}$$

Для обоих из представленных подходов и каждого варианта модели неоднородности (6-A) либо (6-Б), во-первых, получены достаточные условия несильной радиальной неоднородности материала волновода (2), обеспечивающие существование базисных наборов аналитических в

области  $|\xi| < \delta$  ( $\delta > 1$ ) частных решений уравнения (7), во-вторых, построены искомые базисные наборы из шести линейно независимых, аналитических в области  $|\xi| < \delta$  ( $\delta > 1$ ) частных решений, представленных своими разложениями с определяемыми из явных рекуррентных соотношений коэффициентами.

Информация о финансовой поддержке: Исследования проводились в рамках государственного задания (номер госрегистрации 124012400354-0).

#### Список литературы

- 1. Моисеенко, И. А. Волны деформаций в функционально-градиентных цилиндрах кольцевого сечения / И. А. Моисеенко, В. А. Моисеенко // Журн. теорет. и прикладной механики. 2019. № 1 (66). С. 31–53.
- 2. Моисеенко, И. А. Спектры неосесимметричных нормальных упругих волн в функционально-градиентных трансверсально изотропных полых цилиндрах / И. А. Моисеенко // Механика твердого тела. 2016. Вып. 46. С. 134—146.
- 3. Моисеенко, И. А. Неосесимметричные нормальные упругие волны в функциональноградиентных ортотропных полых цилиндрах / И. А. Моисеенко, С. А. Прийменко, В. А. Шалдырван // Журн. теорет. и прикладной механики. 2017. № 1 (58). С. 27–41.
- 4. Моисеенко, И. А. Исследование свойств изгибных волн в сплошных цилиндрах на основе трехфакторной модели радиальной неоднородности изотропного материала / И. А. Моисеенко, А. И. Дзундза, Н. Ю. Мельничук, В. А. Шалдырван // Журн. теорет. и прикладной механики. − 2023. − № 2 (83). − С. 5–25.
- 5. Шульга, Н. А. Распространение осесимметричных упругих волн в ортотропном полом цилиндре / Н. А. Шульга // Прикладная механика. − 1974. − Т. 10, № 9. − С. 14–18.

УДК 539.374

# КРУЧЕНИЕ УПРУГОПЛАСТИЧЕСКОГО Z-ОБРАЗНОГО СЕЧЕНИЯ СТЕРЖНЯ ПРОКАТНОГО ПРОФИЛЯ, АРМИРОВАННОГО УПРУГИМИ ВОЛОКНАМИ

**Евтихов Д.О.,** ORCID 0009-0007-4626-1096, **Савостьянова И.Л.,** д-р физ.-мат. наук, доц. ORCID 0009-0007-4626-1096 ФГБОУ ВО «Сибирский государственный университет науки и технологий им. М.Ф.Решетнева», г. Красноярск, РФ devtikhov@yandex.ru, ruppa@inbox.ru

Рассмотрена задача об упругопластическом кручении стержней прокатного профиля, армированных упругими волокнами. Для решения задачи использовался метод законов сохранения. На основе аналитического решения разработана программа для ЭВМ для нахождения упругопластической границы стержня. Приведены результаты работы программы.

В последнее время широкое распространение получили стержни прокатного профиля, армированные упругими волокнами. Они обладают рядом преимуществ перед металлическим изделиями. Как правило, они меньше весят, и армирование позволяет им выдерживать большие нагрузки до разрушения, чем их металлические аналоги. Однако, устоявшихся методов расчета их несущей способности в настоящее время практически нет.

Развитие решения поставленных проблем приводят к задаче определения упругопластической границы в армированных упругими волокнами стержнях прокатного профиля [1]. До появления работ [2] отсутствовали эффективные методы решения задач определения упругопластической границы.

Постановка задачи. Рассмотрим задачу кручение прокатного профиля под действием крутящего момента. Предполагается, что матрица из прокатного профиля усилена упругими волокнами. Граница контакта слоев расположена вдоль оси OZ. Боковая граница стержня свободна от напряжений; граница находится в пластическом состоянии. Компоненты тензора напряжений в точке вычисляются через систему контурных интегралов, выведенных из законов сохранения, и вычисленных по боковой границе и границе волокон. В тех точках, где достигается предел текучести определяется пластическое состояние, в остальных – упругое. Это позволяет построить границу между пластической и упругой областями. Данная методика дает способ вычислить упругопластические границы для основных прокатных профилей стержней. Отметим, что предлагаемая методика развивается на основе предыдущих успешных решений для двумерных задач пластичности, для анализа кручения изотропных стержней и упругих сред для тел конечных размеров.

Матрица стержня имеет модуль упругости G и предел текучести при чистом сдвиге k. Волокна расположены вдоль стержня в произвольном порядке параллельно оси Z. Каждое волокно имеет круглое сечение, центр располагается в точке  $A_i$  с координатами  $(x_i, y_i)$ , радиус волокна равен R, модуль упругости  $G_i$ . Пределы текучести волокон превосходят предел текучести матрицы. Касательное напряжение между волокном и матрицей равно  $\tau < k$ .

Заданный процесс описывается уравнением равновесия (1) и уравнением совместности деформаций (2)

$$\frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} = 0 \tag{1}$$

$$\frac{\partial \tau_{xz}}{\partial y} = \frac{\partial \tau_{yz}}{\partial x} + a,\tag{2}$$

где  $a = -G\theta$ ,  $\theta$  — угол закручивания, G — модуль упругости.

Граничные условия на боковой поверхности стержня, свободной от напряжений, и находящейся в пластическом состоянии

 $\tau_{xz}n_0 + \tau_{yz}m_0 = 0$ ,  $\tau_{xz}^2 + \tau_{yz}^2 = k^2$ , где  $n_0, m_0$  – компоненты вектора нормали к боковой поверхности; которые можно записать в виде:

$$\tau_{xz} = \pm mk, \tau_{vz} = \pm nk. \tag{3}$$

На границе между волокном и матрицей выполняются условия  $\tau_{xz}m_i + \tau_{yz}n_i = \tau$ ,  $\tau_{xz}^2 + \tau_{yz}^2 = k^2$ , где  $n_i$ ,  $m_i$  компоненты вектора нормали к боковой поверхности i-го волокна, которые запишем в виде.

Более подробно эти вычисления рассматриваются в [3].

Используя данные вычисления, мы построили упругопластическую границу для стержня, армируемого волокнами, находящегося под действием касательных напряжений на боковой поверхности. Те точки, где  $\tau_{xz}^2 + \tau_{yz}^2 \ge k^2$  будут находиться в пластическом состоянии, остальные точки среды, а также волокна, будут оставаться упругими. Предложенный метод решения позволяет построить упругопластическую границу в скручиваемом стержне и тем самым оценить его несущую способность. Для расчетов нами была разработана программа для ЭВМ [4]. Результаты представлены далее.

На рисунке 1 представлено изменение упругопластические границы прокатного профиля Z-образного сечения, армированного упругими волокнам, в зависимости от изменения значения крутящего параметра a.

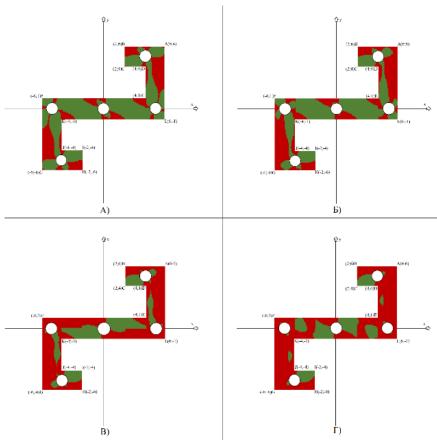



Рис. 1. Упругопластическая граница профиля Z-образного сечения, при изменении значения крутящего параметра в A) a=-0,6 Б) a =-1 В) a =-1,6  $\Gamma$ ) a =-3.

Рассмотрена задача о упругопластическом кручении стержней прокатного профиля, армированных упругими волокнами. Для решения задачи использовались законы сохранения. На основе аналитических решений разработана программа для ЭВМ, определяющая упругопластические границы стержня. Приведены результаты работы программы с различными значениями крутящего параметра для Z-образных профилей.

#### Список литературы

- 1. Аннин, Б. Д. Упруго-пластическая задача / Б. Д. Аннин, Г. П. Черепанов. Новосибирск: Наука, 1983. 238 с. ISBN 5-7692-0297-1. EDN: XXGCWN.
- 2. Сенашов, С. И. Об упругопластическом кручении стержня / С. И. Сенашов, О. Н. Черепанова, А. В. Кондрин // Вестн. Сиб. гос. аэрокосм. ун-та им. акад. М. Ф. Решетнева. 2013. № 3 (49). С. 100–103. EDN: RFWONN.
- 3. Сенашов, С. И. Приложение симметрий и законов сохранения к решению дифференциальных уравнений / П. П. Киряков, С. И. Сенашов, А. Н. Яхно; отв. ред. Б. Д. Аннин. Новосибирск: Изд-во СО РАН, 2001. –189 с. ISBN 5-7692-0459-1.
- 4. Построение упругопластической границы скручиваемого Z-образного профиля, армированного упругими волокнами. Свидетельство о государственной регистрации программы для ЭВМ № 2025614586 Российская Федерация: заявл. 12.02.2025: опубл. 24.02.2025 / Д. О. Евтихов, И. Л. Савостьянова, С. И. Сенашов, О. Н. Черепанова. EDN: WGLNTQ.

УДК 531.38

# ПОСТРОЕНИЕ ОСНОВНЫХ СООТНОШЕНИЙ МИКРОПОЛЯРНОЙ ТЕОРИИ УПРУГИХ СТЕРЖНЕЙ

**Илюхин А.А.**<sup>1</sup>, д-р физ.-мат. наук, проф., **Тимошенко Д.В.**<sup>2</sup>, канд. физ.-мат. наук

 $^1$  ФГБНУ «Инстутут прикладной математики и механики», г. Донецк, РФ  $^2$ Инженерно-технологическая академия ФГАОУ ВО «Южный федеральный университет», г. Таганрог, Ростовская обл., РФ

Классическая теория упругости описывает свойства тел, у которых между частицами действуют центральные силы. Эта теория не всеобъемлюща: она, в частности, не в состоянии корректно описать закономерности распространения коротких акустических волн, в особенности в жидких кристаллах и (в некоторых случаях) законы пьезоэлектрических явлений, а также аномалии динамической упругости пластиков и тонких тел [1]. В связи с этим в работах [1–5] была развита теория упругости сплошных сред, учитывающая моментное (вращательное) взаимодействие частиц – моментная теория упругости. Важным этапом в развитии механики сплошной среды в данном направлении явилась работа

братьев Коссера [2], в которой описана модель, впоследствии получившая названия континуума Коссера или микрополярной среды. В рамках этой модели учитывается не только изменение центров тяжести «микрочастиц», но и их ориентации. Известно, что даже система одних сил в общем случае не может быть сведена к одной лишь равнодействующей, — необходимо введение ещё и результирующего момента [1]. Тогда взаимодействие любых двух частиц необходимо воспроизводить с помощью двух нецентральных сил  $F_i^A$  и  $F_i^B$  (можно считать, что они приложены к центрам инерции частиц) и двух моментов  $M_i^A$  и  $M_i^B$ , для которых выполняются соотношения:

$$F_i^A + F_i^B = 0, M_i^A + M_i^B + r_m^{AB} F_n^A e_{imn} = 0,$$
 (1)

где  $r_m^{AB}$  — вектор, соединяющий центры инерции частиц,  $e_{imn}$  — компоненты тензора Леви-Чивита. Таким образом, в рамках континуума Коссера учитывается вращательное взаимодействие частиц. Наряду с обычным полем напряжений в микрополярной среде присутствуют также и моментные напряжения.

Механика микрополярной среды (континуума Коссера) получила значительное развитие в основополагающих работах Э.Л. Аэро и соавторов [1], В.А. Пальмова [3], Эрингена [4], Новацкого [5].

Данная работа отражает результаты авторов в задаче построения микрополярной модели упругого стержня посредством редукции от трёхмерной моментной теории упругости к одномерной (теории стержней). При этом возникает задача обоснования осуществимости такой редукции и замкнутости основной системы уравнений полученной теории.

**Исходные соотношения.** В дальнейшем предполагается, что латинские индексы принимают значения от 1 до 3, греческие от 2 до 3, по повторяющимся латинским индексам подразумевается суммирования от 1 до 3, а по греческим от 2 до 3.

Предполагаем, что тело деформировано распределенной торцевой нагрузкой. В этом случае при отсутствии уравнения равновесия тела при отсутствии массовых сил имеют вид [6, 7]:

$$\frac{1}{\sqrt{g}}(\tilde{\nabla}_{1}\sigma_{1j}-e_{1\alpha\beta}\omega_{1}x_{\alpha}\nabla_{\beta}\sigma_{1j}+\omega_{s}(e_{1si}\sigma_{ij}+e_{jsm}\sigma_{1m}))+\nabla_{\alpha}\sigma_{\alpha j}=0,$$

$$\frac{1}{\sqrt{g}}(\tilde{\nabla}_1\mu_{1j} - e_{1\alpha\beta}\omega_1 x_\alpha \nabla_\beta \mu_{1j} + \omega_s(e_{1si}\mu_{ij} + e_{jsm}\mu_{1m})) + \nabla_\alpha \mu_{\alpha j} + e_{jnm}\sigma_{nm} = 0, \quad (2)$$

где  $\mu_{ij}$ ,  $\sigma_{ij}$  — компоненты несимметричных тензоров моментных и силовых напряжений,  $e_{ijk}$  — компоненты тензора Леви-Чивита в рассматриваемом базисе. Граничные условия на боковой поверхности тела представимы в виде [6, 7]:

$$\frac{1}{\sqrt{g}}\sigma_{1j}\omega_{1}e_{1\alpha\beta}n_{\alpha}x_{\beta} + n_{\alpha}\sigma_{\alpha j} = 0, \quad \frac{1}{\sqrt{g}}\mu_{1j}\omega_{1}e_{1\alpha\beta}n_{\alpha}x_{\beta} + n_{\alpha}\mu_{\alpha j} = 0.$$
 (3)

Тензоры деформации и кривизны в главных осях в диадном представлении имеют вид

$$\hat{\gamma} = \frac{1}{\sqrt{g}} \vec{\mathcal{I}}_1 \otimes \vec{\mathcal{I}}_i \{ \tilde{\nabla}_1 u_i + e_{isp} \omega_s u_p - e_{1\alpha\beta} \omega_1 x_\alpha \nabla_\beta u_i \} + \vec{\mathcal{I}}_\alpha \otimes \vec{\mathcal{I}}_i \nabla_\alpha u_i + e_{mij} \theta_j \vec{\mathcal{I}}_i \otimes \vec{\mathcal{I}}_m,$$

$$\hat{\kappa} = \frac{1}{\sqrt{g}} \vec{\mathcal{I}}_1 \otimes \vec{\mathcal{I}}_i \{ \tilde{\nabla}_1 \theta_i + e_{isp} \omega_s \theta_p - e_{1\alpha\beta} \omega_1 x_\alpha \nabla_\beta \theta_i \} + \vec{\mathcal{I}}_\alpha \otimes \vec{\mathcal{I}}_i \nabla_\alpha \theta_i , \quad (4)$$

 $\theta_i$  – компоненты вектора поворота.

Компоненты тензоров деформации и кривизны удовлетворяют условиям Сандру [5]:

$$\frac{e_{m1i}}{\sqrt{g}}(\tilde{\nabla}_{1}\kappa_{ij} + \omega_{s}(\kappa_{pj}e_{isp} + \kappa_{ip}e_{jsp})) = 0,$$

$$\frac{e_{m1i}}{\sqrt{g}}(\tilde{\nabla}_{1}\gamma_{ij} + \omega_{s}(\gamma_{pj}e_{isp} + \gamma_{ip}e_{jsp})) - \kappa_{jm} + \delta_{mj}\kappa_{ii} = 0$$
(5)

Относительно свойств материала предполагаем, что тело является однородным, криволинейно-изотропным и связь между силовыми и геометрическими компонентами представима в виде [5]:

$$i \neq j, \quad \sigma_{ij} = \mu(\gamma_{ij} + \gamma_{ji}) + \alpha(\gamma_{ij} - \gamma_{ji}), \quad \mu_{ij} = \beta(\kappa_{ij} + \kappa_{ji}) + \nu(\kappa_{ij} - \kappa_{ji}),$$

$$i = j, \quad \sigma_{ij} = 2\mu\gamma_{ij} + \lambda\gamma_{kk}, \quad \mu_{ij} = 2\beta\kappa_{ij} + \pi\kappa_{kk},$$
(6)

где константы  $\beta$ ,  $\lambda$ ,  $\mu$ ,  $\pi$ ,  $\nu$  определяют физические свойства материала.

Построение асимптотической модели. Пусть h — характерный размер поперечного сечения стержня, а l — длина кривой L или ее минимальный радиус кривизны. Введем параметр  $\varepsilon = h/l$  (если минимальный радиус кривизны  $R_{\min}$  кривой L значительно меньше его длины, то  $\varepsilon = h/R_{\min}$ ), который для рассматриваемого тела будем считать достаточно малым. Введем безразмерные величины следующим образом s = ls',  $x_{\alpha} = hx'_{\alpha}$ ,  $u_i = hu'_i$ ,  $\omega_i = l\omega'_i$ .  $\kappa_{ii} = \kappa'_{ii}/h$ .

В [6] показано, что решение уравнений теории упругости может быть построено в виде асимптотических рядов по введенному малому параметру, а также определены порядки разложений для компонентов тензоров деформаций, напряжений, и вектора перемещений. Выбирая в качестве основных переменных задачи компоненты тензоров силовых и моментных напряжений, получаем разложения:

$$\hat{\gamma} = \sum_{k=-2}^{\infty} \gamma_{ij}^{(k+2)} \varepsilon^k \vec{\mathcal{J}}_i \otimes \vec{\mathcal{J}}_j , \quad \hat{\kappa} = \sum_{k=-2}^{\infty} \kappa_{ij}^{(k+2)} \varepsilon^k \vec{\mathcal{J}}_i \otimes \vec{\mathcal{J}}_j ,$$

$$\vec{u} = \sum_{k=-4}^{\infty} u_i^{(k+4)} \varepsilon^k \vec{\mathcal{J}}_i, \quad \vec{\theta} = \sum_{k=-4}^{\infty} \theta_i^{(k+4)} \varepsilon^k \vec{\mathcal{J}}_i.$$
 (7)

**Анализ соотношений нулевого приближения.** В случае нулевого приближения для коэффициентов разложения основных переменных задачи имеем следующую систему уравнений и граничных условий

$$\nabla_{\alpha} \sigma_{\alpha j}^{(0)} = 0 \,, \quad \nabla_{\alpha} \mu_{\alpha j}^{(0)} + e_{jik} \sigma_{ik}^{(0)} = 0 \,, \tag{8}$$

$$n_{\alpha}\sigma_{\alpha i}^{(0)} = 0$$
,  $n_{\alpha}\mu_{\alpha i}^{(0)} = 0$ , на  $\partial\Omega$  (9)

$$e_{m\alpha i} \nabla_{\alpha} \kappa_{ij}^{(0)} = 0 , \quad e_{m\alpha i} \nabla_{\alpha} \gamma_{ij}^{(0)} - \kappa_{jm}^{(0)} + \delta_{mj} \kappa_{ii}^{(0)} = 0,$$

$$i \neq j , \quad \sigma_{ij}^{(0)} = \mu (\gamma_{ij}^{(0)} + \gamma_{ji}^{(0)}) + \alpha (\gamma_{ij}^{(0)} - \gamma_{ji}^{(0)}),$$

$$(10)$$

$$\mu_{ii}^{(0)} = \beta(\kappa_{il}^{(0)} + \kappa_{ii}^{(0)}) + \nu(\kappa_{ii}^{(0)} - \kappa_{ii}^{(0)}),$$

$$i = j, \quad \sigma_{ij}^{(0)} = 2\mu\gamma_{ij}^{(0)} + \lambda\gamma_{kk}^{(0)}, \quad \mu_{ij}^{(0)} = 2\beta\kappa_{ij}^{(0)} + \pi\kappa_{kk}^{(0)}.$$
 (11)

В работе [6] показано, что решение системы уравнений нулевого приближения должны удовлетворять дополнительным соотношениям, вытекающим из интегральных условий разрешимости задачи первого приближения. Используя уравнения и граничные условия для определения коэффициентов разложения тензоров моментных и силовых напряжений

$$\nabla_{\alpha}\sigma_{\alpha j}^{(1)} = -\{\tilde{\nabla}_{1}\sigma_{1j}^{(0)} - e_{1\alpha\beta}\omega_{1}x_{\alpha}\nabla_{\beta}\sigma_{1j}^{(0)} + (e_{1si}\sigma_{ij}^{(0)} + e_{jsm}\sigma_{1m}^{(0)})\omega_{s}\}$$

$$\nabla_{\alpha}\mu_{\alpha j}^{(1)} + e_{jnm}\sigma_{nm}^{(1)} = -\{\tilde{\nabla}_{1}\mu_{1j}^{(0)} - e_{1\alpha\beta}\omega_{1}x_{\alpha}\nabla_{\beta}\mu_{1j}^{(0)} + (e_{1si}\mu_{ij}^{(0)} + e_{jsm}\mu_{1m}^{(0)})\omega_{s}\}, \quad (12)$$

$$n_{\alpha}\sigma_{\alpha j}^{(1)} = -\sigma_{1j}^{(0)}\omega_{1}e_{1\alpha\beta}n_{\alpha}x_{\beta}, \quad n_{\alpha}\mu_{\alpha j}^{(1)} = -\mu_{1j}^{(0)}\omega_{1}e_{1\alpha\beta}n_{\alpha}x_{\beta}$$

получим следующие дополнительные соотношения  $Q_{ii}^{(0)} = Q_{ii}^{(0)} = 0$ , где

$$Q_{ij}^{(0)} = \int_{\Omega} \sigma_{ij}^{(0)} d\Omega.$$
 (13)

Анализ выражений для компонентов тензоров деформации и кривизны показал, что коэффициенты  $u_i^{(0)}$ ,  $u_i^{(1)}$ ,  $\theta_i^{(0)}$ ,  $\theta_i^{(1)}$  имеет следующее представление [6, 7]:

$$u_i^{(0)} = \tilde{u}_i^{(0)}, \quad \theta_i^{(0)} = 0, \quad u_i^{(1)} = \tilde{u}_i^{(1)} + e_{ii\alpha}\tilde{\theta}_i^{(1)}x_\alpha, \quad \theta_i^{(1)} = \tilde{\theta}_i^{(1)},$$
 (14)

в котором величины со знаком тильды зависят только от дуговой координаты s. С учетом соотношений (13) для коэффициентов  $\gamma_{ij}^{(0)}$  и  $\kappa_{ij}^{(0)}$  получим

$$\gamma_{11}^{(0)} = \chi_{1}^{(1)} - x_{2} \kappa_{3}^{(1)} + x_{3} \kappa_{2}^{(1)}, \quad \gamma_{12}^{(0)} = \chi_{2}^{(1)} - x_{3} \kappa_{1}^{(1)} - \theta_{3}^{(2)}, \quad \gamma_{13}^{(0)} = \chi_{3}^{(1)} + x_{2} \kappa_{1}^{(1)} + \theta_{2}^{(2)}, \\
\kappa_{\alpha i}^{(0)} = \nabla_{\alpha} \theta_{i}^{(2)}, \quad \gamma_{\alpha i}^{(0)} = \nabla_{\alpha} u_{i}^{(2)} - e_{\alpha i j} \theta_{j}^{(2)}, \quad \kappa_{1 i}^{(0)} = \kappa_{i}^{(1)}, \quad (15)$$

где введены следующие обозначения:

$$\kappa_i^{(1)} = \frac{d}{ds}\tilde{\theta}_i^{(1)} + e_{ijk}\omega_j\tilde{\theta}_k^{(1)}, \quad \chi_i^{(1)} = \frac{d}{ds}\tilde{u}_i^{(1)} + e_{ijk}\omega_j\tilde{u}_k^{(1)}.$$
 (16)

В соотношениях (14)–(15) функции  $v_i^{(j)}$ ,  $\Theta_i^{(j)}$  являются функциями только точек поперечного сечения. Для нахождения этих функций допустим определённый произвол в силу неединственности решения задачи Сен-Венана. Уравнения для нахождения функций  $v_i^{(j)}$ ,  $\Theta_i^{(j)}$  можно получить следующим образом: запишем шесть дифференциальных уравнений равновесия для функций  $v_i^{(j)}$ ,  $\Theta_i^{(j)}$ , используя соотношения (14)–(15). В полученных соотношениях приравняем к нулю коэффициенты при величинах  $\kappa_i^{(1)}$ , в результате получается девять независимых уравнений для нахождения девяти неизвестных функций  $v_i^{(j)}$ ,  $\Theta_i^{(j)}$ . Данный факт указывает на расщепление трехмерной задачи на систему двумерных уравнений для нахождения функций точек поперечного сечения  $v_i^{(j)}$ ,  $\Theta_i^{(j)}$  и одномерных уравнений для нахождения функций дуговой координаты. Полученные в [7] соотношения (11) и (12) позволяют определить силы и моменты, действующие в поперечном сечении стержня, которые задаются следующими соотношениями

$$F_i = \int_{\Omega} \sigma_{1i} d\Omega, \quad M_i = \int_{\Omega} \{e_{i\alpha k} \sigma_{1k} + \mu_{1i}\} d\Omega.$$
 (17)

Используя формулы (17), получим следующие выражения для компонент  $M_i$  вектора-момента:

$$M_1 = B_1 \omega_1 + A_1 \omega_1 \,, \\ M_2 = B_{22} \omega_2 + B_{23} \omega_3 + A_2 \omega_3 \,, \\ M_3 = B_{31} \omega_2 + B_{33} \omega_3 + A_3 \omega_2 \,, \\ (18)$$

Коэффициенты  $A_i$  в соотношениях (18) характеризуют вклад моментных напряжений, возникающих между частицами в процессе деформации, в величину компонент вектора-момента. Анализ выражения для коэффициентов  $B_{23}$   $B_{31}=0$  показывает, что имеют место равенства

$$B_{23} = B_{31} = 0. (19)$$

В [7] показано, что величины  $B_{23}$  и  $B_{31}$  в соотношениях (18) обращаются в нуль без каких-либо дополнительных ограничений на характер деформаций или свойства деформируемого объекта. Последнее означает, что учет моментных напряжений не приводит к изменению структуры замыкающих соотношений системы уравнений Кирхгофа посредством появления величин, зависящих от силовых напряжений. Таким образом, при отсутствии моментных напряжений ( $A_i = 0$ ) замыкающие соотношения (18) переходят в соотношения, соответствующие классической теории Кирхгофа.

Анализ величин  $A_i$  показывает, что  $A_1$  является величиной неотрицательной. Таким образом, учёт моментных напряжений приводит к увеличению сопротивления материала стержня деформации растяжения (увеличению суммарной жёсткости) и, как следствие, к увеличению растягивающего момента  $M_1$ .

Для коэффициентов  $A_2$ ,  $A_3$  в работе [7] получено соотношение  $A_2 = A_3$ , которое носит общий характер.

Компоненты  $M_i$  вектора-момента, найденные по формулам (18), представляют собой замыкающие соотношения для системы уравнений Кирхгофа.

Соотношения (18) совместно с системой уравнений Кирхгофа представляют собой замкнутую систему, описывающую деформации стержня под действием концевых нагрузок с учётом моментных напряжений, возникающих в процессе деформации между частицами, из которых состоит материал стержня.

#### Список литературы

- 1. Аэро, Э. Л. Основные уравнения теории упругости сред с вращательным взаимодействием частиц / Э. Л. Аэро, Е. В. Кувшинский // ФТТ. 1960. Т. 2. № 7. С. 1399–1409.
- 2. Cosserat, E. Théorie des corps deformables / E. Cosserat, F. Cosserat // Traite de Physique / O.D. Chwolson. Paris, 1909. P. 953–1173.
- 3. Пальмов, В. А. Основные уравнения теории несимметричной упругости / В. А. Пальмов // ПММ. 1964. Т. 28, вып. 3. С. 401–408.
- 4. Eringen, A. C. Nonlocal polar field theories / A.C. Eringen // Continuum Physics / ed. A. C. Eringen. New York: Academic Press, 1976. Vol. 4. P. 205–268.
- 5. Nowacki, W. Theory of Asymmetric Elasticity / W. Nowacki. Oxford, New-York, Toronto et al: Pergamon-Press, 1986. 383 p.
- 6. Илюхин, А. А. К моментной теории упругих стержней / А. А. Илюхин, Н. Н. Щепин // Изв. вузов. Сев.-Кавказ. регион. Естеств. науки. 2001. Спецвыпуск. С. 92—94.
- 7. Илюхин А.А. Микрополярная теория упругих стержней / А.А. Илюхин, Д.В. Тимошенко // Изв. Сарат. ун-та. Сер. Математика. Механика. Информатика. 2008. Т. 8, вып. 4. С. 27—39.

## РЕШЕНИЕ ЗАДАЧИ ЭЛЕКТРОУПРУГОСТИ ОБ ИЗГИБЕ ТОНКОЙ ПЛИТЫ С УПРУГИМИ ВКЛЮЧЕНИЯМИ

**Калоеров С.А.,** д-р физ.-мат. наук, ORCID 0000-0003-1339-6035, **Ермаков О.Э.,** ORCID 0009-0007-4854-4209, **Мироненко А.Б.,** канд. физ.-мат. наук, ORCID 0009-0002-1824-0136

**Пироненко А.Б.,** канд. физ.-мат. наук, ОКСТО 0009-0002-1824-015 ФГБОУ ВО «Донецкий государственный университет», г. Донецк, РФ kaloerov@mail.ru, ermakov.donetsk@gmail.com, a.b.mironenko@mail.ru

**Введение.** В качестве элементов современных конструкций используются тонкие плиты из пьезоматериалов, содержащие инородные включения из других материалов. Под действием электрических полей и механических сил вблизи таких включений могут возникать высокие концентрации напряжений, что необходимо учитывать при проектировании таких конструкций. Ниже приводится решение такой задачи для плиты с рядом таких включений с описанием результатов исследований для плиты с двумя упругими круговыми включениями.

Постановка и решение задачи. Рассмотрим отнесенную к

прямоугольной декартовой системе координат Oxy бесконечную электроупругую тонкую плиту, которая занимает область S, ограниченную эллиптические отверстия с контурами  $L_l$  ( $l=\overline{1,\mathcal{L}}$ ) и полуосями  $a_l$ ,  $b_l$  (рис. 1). В отверстия вложены включения из других материалов с областями  $S^{(l)}$  таким образом, что они находятся с плитой в условиях идеального электроупругого контакта. Если

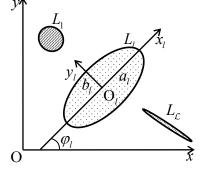



Рис. 1

включение переходит в линейное, его можно рассматривать как эллиптическое, у которого  $b_l=0$ . Каждое включение отнесем к локальной системе координат  $O_l x_l y_l$  ( $l=\overline{1,\mathcal{L}}$ ) с началом в центре эллипса  $L_l$  и осями  $O_l x_l$  вдоль полуосей  $a_l$ . Тогда в этих системах и в основной системе координат уравнения эллипсов имеют вид

$$x_l = a_l \cos \theta, \quad y_l = b_l \sin \theta;$$
 (1)

$$x = x_{0l} + x_l \cos \varphi_l - y_l \sin \varphi_l, \quad y = y_{0l} + x_l \sin \varphi_l + y_l \cos \varphi_l,$$
 (2)

где  $\theta$  — параметр, изменяющийся в интервале от 0 до  $2\pi$ ;  $\phi_l$  — угол между положительными направлениями осей Ox и  $O_lx_l$ , отсчитываемый от оси Ox против часовой стрелки;  $x_{0l}$ ,  $y_{0l}$  — координаты начала локальной системы

 $O_{l}x_{l}y_{l}$  в основной системе координат Oxy. На бесконечности плита находится под действием механических моментов  $M_{x}^{\infty}$ ,  $M_{y}^{\infty}$ ,  $H_{xy}^{\infty}$  и моментов индукций  $M_{dx}^{\infty}$ ,  $M_{dy}^{\infty}$ .

Используя свойства комплексных потенциалов и методы конформных отображений, для производных комплексных потенциалов задачи получим выражения [2]

$$W_{k}''(z_{k}) = \Gamma_{k} + \sum_{l=1}^{\mathcal{L}} \sum_{n=1}^{\infty} \varphi_{kln}'(z_{k}) a_{kln},$$

$$W_{k}''^{(l)}(z_{k}^{(l)}) = \sum_{n=1}^{\infty} \varphi_{kn}'^{(l)}(z_{k}^{(l)}) a_{kn}^{(l)} (k = \overline{1,3}),$$
(3)

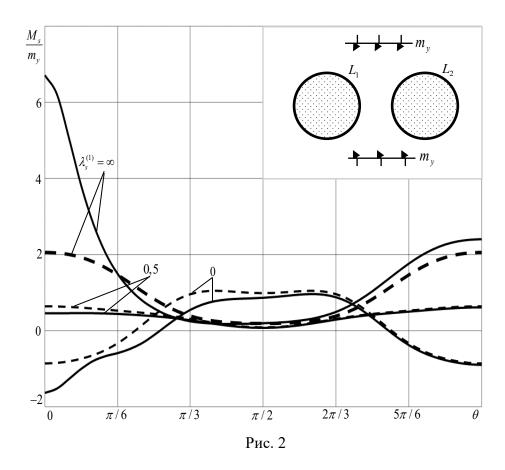
в которых  $\Gamma_k$  – известные постоянные, вычисляемые из условий загружения плиты на бесконечности [2],

$$\phi'_{kln}(z_k) = -\frac{n}{\zeta_{kl}^{n-1} R_{kl} (\zeta_{kl}^2 - m_{kl})}, 
\phi'_{kn}(z_k^{(l)}) = n (z_k^{(l)} - z_{k0}^{(l)})^{n-1} (l = \overline{1, \mathcal{L}}),$$

 $\zeta_{kl}$  — переменные, определяемые из неявных зависимостей

$$z_{k} = z_{kl0} + R_{kl} \left( \zeta_{kl} + \frac{m_{kl}}{\zeta_{kl}} \right);$$

$$z_{kl0} = x_{0l} + \mu_{k} y_{0l},$$


$$R_{kl} = \frac{a_{l} \left( \cos \varphi_{l} + \mu_{k} \sin \varphi_{l} \right) + ib_{l} \left( \sin \varphi_{l} - \mu_{k} \cos \varphi_{l} \right)}{2},$$

$$m_{kl} = \frac{a_{l} \left( \cos \varphi_{l} + \mu_{k} \sin \varphi_{l} \right) - ib_{l} \left( \sin \varphi_{l} - \mu_{k} \cos \varphi_{l} \right)}{2R_{kl}};$$
(4)

все величины со значком (l) вверху относятся к включению  $S^{(l)}$ ;  $a_{kln}$  и  $a_{kn}^{(l)}$  – неизвестные постоянные, которые определяются из граничных условий на контурах контактов плиты S и включений  $S^{(l)}$ . Удовлетворяя этим условиям обобщенным методом наименьших квадратов, получим линейных алгебраических переопределенную систему уравнений, методом сингулярных разложений. После определения указанных постоянных можно найти изгибающие моменты и моменты индукций и напряженностей в любой точке плиты.

Проведены многочисленные исследования по электроупругому состоянию плиты с включениями из упругих материалов в зависимости от

формы, количества и взаиморасположения включений. При проведении численных исследований упругие свойства материала плиты связывались со свойствами материала каждого включения соотношениями  $s_{ij}^{(l)} = \lambda_s^{(l)} s_{ij}$ , где  $\lambda_s^{(l)}$  — параметры, связывающие соответствующие постоянные материалов бесконечной плиты с областью S и включений с областями  $S^{(l)}$ . На рис. 2 для случая изгиба моментами  $M_y^{\infty} = m_y$  электроупругой плиты с двумя одинаковыми круговыми упругими включениями радиуса  $a_1$  на расстоянии c=0,1 (сплошные линии) и  $c=\infty$  (штриховые) для некоторых значений параметра  $\lambda_s^{(l)}$  приведены графики распределения моментов  $M_s$  вблизи левого включения.



Как видно из рис. 2, при уменьшении расстояния c между включениями значения моментов  $M_s$  в плите около контуров включений резко изменяются вблизи точек перемычки и несколько меньше в зонах противоположной перемычке. При этом, с уменьшением жесткости включений, значения моментов  $M_s$  растут.

**Информация о финансовой поддержке:** Исследования проводились в рамках государственного задания (номер госрегистрации 124012400354-0).

#### Список литературы

- 1. Калоеров, С. А. Основные соотношения прикладной теории изгиба тонких электромагнитоупругих плит / С. А. Калоеров // Вестн. Донец. нац. ун-та. Сер. А: Естеств. науки. 2022. № 1. С. 20–38. EDN: EZZZBN;
- 2. Калоеров, С. А. Решение задачи об электромагнитоупругом изгибе многосвязной плиты / С. А. Калоеров, А. В. Сероштанов // Прикладная математика и техническая физика. 2022. Т. 63, № 4. С. 143–155. DOI: 10.15372/PMTF20220415. EDN: LWKFFP.

#### УДК 539.3

# ИССЛЕДОВАНИЕ ЭЛЕКТРОУПРУГОГО СОСТОЯНИЯ ПОЛУПЛОСКОСТИ С ОТВЕРСТИЯМИ И ТРЕЩИНАМИ

**Калоеров С.А.,** д-р физ.-мат. наук, проф., ORCID 0000-0003-1339-6035, **Полянский М.А.,** ORCID 0009-0007-2281-3220

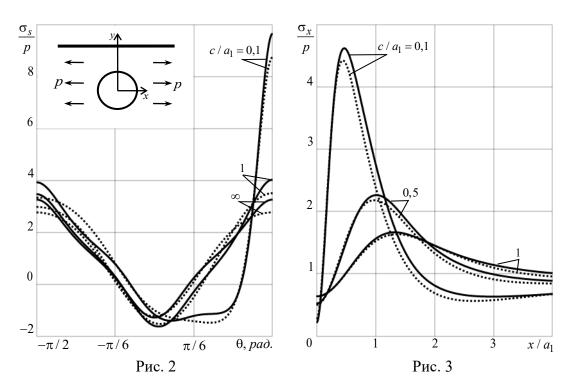
ФГБОУ ВО «Донецкий государственный университет», г. Донецк, РФ kaloerov@mail.ru, m4xpolyan@yandex.ru

Введение. В различных отраслях современной промышленности в качестве элементов конструкций широко используются пластинки из пьезоматериалов с отверстиями и прямолинейными разрезами-трещинами, около которых при эксплуатации конструкций возникают высокие концентрации напряжений, может приводить ЧТО разрушению К конструкций. Все это необходимо учитывать при проектировании конструкций, исследуя электроупругое состояние этих элементов с использованием известных методов. В то же время известно, что наиболее достоверные результаты по исследованию электроупругого состояния получаются при использовании комплексных потенциалов плоской задачи электроупругости [1]. Ниже с использованием этих функций дано решение задачи для полуплоскости с отверстиями и трещинами.

Рассматривается Постановка решения задачи. занимающая нижнюю полуплоскость эллиптическими контурами  $L_{l}$  $(l=1,\mathcal{L})$ отверстиями  $b_1$ (рис. 1) пьезопластинка, полуосями  $a_1$ , отнесенная к прямоугольной системе координат произвольной Oxyначалом В точке  $h^+$ расстоянии Рис. 1 полуплоскости на прямолинейной границы  $L^+$  и осью Ox, параллельной этой границе. В частном случае эллипсы могут переходить в прямолинейные разрезытрещины, при наличии криволинейных отверстий их контуры могут аппроксимироваться дугами эллипсов и берегами трещин. На бесконечности полуплоскость находится под действием усилий  $\sigma_x^{\infty}$  и индукций  $D_x^{\infty}$  (или напряженностей  $E_x^{\infty}$ ), угол жесткого поворота полуплоскости, как целой, равен нулю, т. е.  $\omega_3^{\infty}=0$ .

Если для решения задачи об электроупругом состоянии рассматриваемой полуплоскости использовать комплексные потенциалы электроупругости [1], то оно сводится к определению из соответствующих граничных условий функций  $\Phi_k(z_k)$   $(k=\overline{1,3})$  обобщенных комплексных переменных  $z_k=x+\mu_k y$ , где  $\mu_k$  — корни известного характеристического уравнения 6-го порядка. При этом функции  $\Phi_k(z_k)$  определены в многосвязных нижних полуплоскостях  $S_k$ , ограниченных прямолинейными границами  $L_k^+$  и контурами  $L_{kl}$ , соответствующими границе  $L^+$  и контурам  $L_l$  при указанных аффинных преобразованиях. Причем, исходя из общих представлений комплексных потенциалов, эти функции в данном случае можно представить в виде [2]

$$\Phi_{k}(z_{k}) = \Gamma_{k} z_{k} + \sum_{l=1}^{\mathcal{L}} \sum_{n=1}^{\infty} \left[ a_{kln} \varphi_{kln}(z_{k}) - \sum_{q=1}^{3} \overline{r_{kk+q-1}} a_{k+q-1ln} \psi_{k+q-1ln}(z_{k}) \right], \quad (1)$$


где

$$\phi_{kln}(z_k) = \frac{1}{\zeta_{kl}^n}, \quad \psi_{k+q-1ln}(z_k) = \frac{1}{\left(\zeta_{k+q-1l}^+\right)^n}, \quad \overline{r_{kk+q-1}} = \sum_{i=1}^3 \frac{\overline{g_{ik+q-1}^0}}{\Delta_k} M_{ik}, \\
\Delta_k = \begin{vmatrix} g_{1k}^0 & g_{1k+1}^0 & g_{1k+2}^0 \\ g_{2k}^0 & g_{2k+1}^0 & g_{2k+2}^0 \\ g_{3k}^0 & g_{3k+1}^0 & g_{3k+2}^0 \end{vmatrix} = \sum_{i=1}^3 g_{ik}^0 M_{ik} \quad (k = \overline{1, 3}, q = \overline{1, 3}),$$

 $M_{ik}$  — алгебраические дополнения элементов первого столбца,  $\Gamma_k$  — известные постоянные, определяемые из решения системы линейных алгебраических уравнений 6-го порядка;  $\zeta_{kl}$  — переменные, определяемые из конформных отображений внешностей единичных кругов  $|\zeta_{kl}| \ge 1$  на внешности контуров  $L_{kl}$ ,  $\zeta_{kl}^+$  — переменные, определяемые из конформных отображений внешностей единичных кругов  $|\zeta_{kl}^+| \ge 1$  на внешности контуров  $L_{kl}^+$  верхней (относительно границы  $L_k^+$ ) полуплоскости  $S_k^+$ , симметричных

относительно прямолинейных границ  $L_k^+$  контурам  $L_{kl}$ ;  $a_{kln}$  — неизвестные коэффициенты рядов Лорана, для определения которых используются граничные условия на прямолинейной границе и на контурах отверстий и трещин. Если для удовлетворения этим условиям использовать обобщенный метод наименьших квадратов, то для определения  $a_{kln}$  получается переопределенная система линейных алгебраических уравнений, которую можно решать методом сингулярного разложения.

Для случая растяжения на бесконечности полуплоскости усилиями  $\sigma_x^{\infty} = p$  на рис. 2 для некоторых значений  $c / a_1$ , в зависимости от центрального угла  $\theta$ , отсчитываемого от оси Ox против часовой стрелки, изображены графики распределения по контуру отверстия нормальных напряжений  $\sigma_s / p$  на площадках, перпендикулярных контуру, а на рис. 3



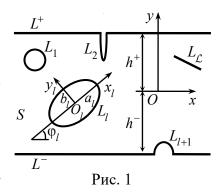
для некоторых значений  $c/a_1$  даны графики распределения  $\sigma_x/p$  вдоль прямолинейной границы, причем сплошные и штриховые линии рисунков относятся к задачам электроупругости и теории упругости соответственно.

Как видно, при приближении отверстия к прямолинейной границе полуплоскости происходит резкое увеличение значений напряжений около контура отверстия и в зоне между отверстием и прямолинейной границей, малой окрестности исключением весьма точки перемычки прямолинейной границе, где ЭТИ напряжения ИХ незначительны. В точках высокой концентрации напряжений велика и доля пьезосвойств на значения напряжений.

#### Список литературы

- 1. Калоеров, С. А. Двумерные задачи электромагнитоупругости для многосвязных тел / С. А. Калоеров, А. В. Петренко. Донецк: Юго-Восток, 2011. 232 с.
- 2. Калоеров, С. А. Решение задачи электромагнитоупругости для полуплоскости с отверстиями и трещинами / С. А. Калоеров, М. А. Полянский, А. В. Сероштанов // Вестн. Донец. нац. ун-та. Сер. А: Естеств науки. 2024. № 2. С. 90–107.

УДК 539.3


# РЕШЕНИЕ ЗАДАЧИ ОБ ЭЛЕКТРОУПРУГОМ ИЗГИБЕ ПОЛОСЫ С ОТВЕРСТИЯМИ, ТРЕЩИНАМИ И ВЫЕМАМИ

**Калоеров С.А.**, д-р физ.-мат. наук, проф., ORCID 0000-0003-1339-6035, **Сероштанов А.В.**, ORCID 0000-0003-3545-3635, **Мироненко А.Б.**, канд. физ.-мат. наук, ORCID 0009-0002-1824-0136 ФГБОУ ВО «Донецкий государственный университет», г. Донецк, РФ kaloerov@mail.ru, aleks.serosht@gmail.com, a.b.mironenko@mail.ru

Введение. Тонкие пьезоплиты с отверстиями широко используются в различных областях современной науки и техники в качестве элементов конструкций. Под действием различных изгибающих воздействий в них около отверстий и трещин могут возникать высокие концентрации напряжений, что нужно учитывать при проектировании конструкций. Следовательно, необходимо иметь надежные методы определения электроупругого состояния (ЭУС) тонких многосвязных пьезоплит. Эти вопросы особенно актуальны для случая тонких пластин, эксплуатируемых в условиях их поперечного изгиба и называемых в этом случае тонкими плитами. Как известно, наиболее достоверные результаты здесь получаются при использовании комплексных потенциалов. Они были использованы и при решении задачи для многосвязной пьезополуплоскости [1] приближенным удовлетворением граничным условиям, что позволило получать решения для случаев, когда отверстия и трещины могут пересекать прямолинейную границу. В данной работе последний подход решения задачи распространен на пьезополосу с произвольными отверстиями и трещинами, которые в частных случаях не только сами могут пересекаться, но и пересекать прямолинейные границы полосы. Описаны результаты численных исследований для пьезополосы с круговым отверстием и двумя круговыми выемами.

Постановка и решение задачи. Рассматривается пьезоплита в виде

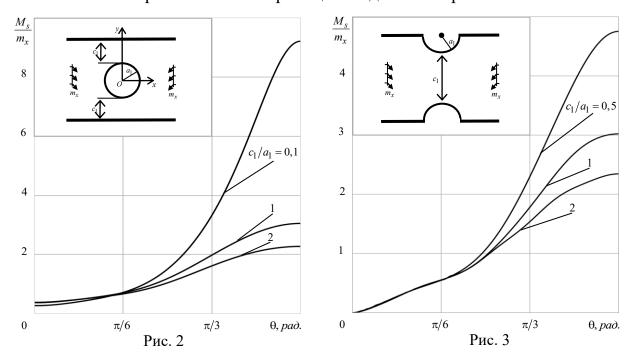
полосы, ограниченная прямолинейными границами  $L^+$  (верхней),  $L^-$  (нижней) и контурами эллиптических отверстий  $L_l$  ( $l=\overline{1,\mathcal{L}}$ ) с полуосями  $a_l$ ,  $b_l$  (рис. 1). Эллипсы могут переходить в прямолинейные разрезы-трещины, пересекать прямолинейные границы, пересекаться между собой, аппроксимировать контуры отверстий произвольной конфигурации. Плита отнесена к прямоугольной системе координат Oxy



с началом в произвольной точке полосы на расстоянии  $h^-$  от ее границы  $L^-$  и на расстоянии  $h^+$  от ее границы  $L^+$ , а также осью Ox, параллельной этим границам. Прямолинейные границы полосы и контуры отверстий не загружены внешними воздействиями, на бесконечности полоса изгибается механическими моментами  $M_x^\infty$  и моментами индукций  $M_{dx}^\infty$ , моменты  $M_y^\infty$ ,  $M_{xy}^\infty$ ,  $M_{dy}^\infty$  в силу незагруженности прямолинейных границ равны нулю.

Если для решения задачи об электроупругом изгибе плиты использовать комплексные потенциалы, то она сводится к определению из соответствующих граничных условий функций  $W_k'(z_k)$   $(k=\overline{1,3})$  обобщенных комплексных переменных  $z_k=x+\mu_k y$ , где  $\mu_k$  — корни известного характеристического уравнения 6-го порядка. При этом функции  $W_k'(z_k)$  определены в многосвязных областях  $S_k$ , ограниченных прямолинейными границами  $L_k^+$ ,  $L_k^-$  и контурами отверстий  $L_{kl}$ , соответствующими границам  $L_k^+$ ,  $L_k^-$  и контурам  $L_l$  при указанных аффинных преобразованиях.

На основании решения задачи электромагнитоупругости для полуплоскости с отверстиями и трещинами [2], комплексные потенциалы  $W_k'(z_k)$  представим в виде


$$W_k'\left(z_k\right) = \Gamma_k z_k + \sum_{l=1}^{\mathcal{L}} \sum_{n=1}^{\infty} \left( \frac{a_{kln}}{\zeta_{kl}^n} + \frac{b_{kln}}{\left(\zeta_{kl}^+\right)^n} + \frac{c_{kln}}{\left(\zeta_{kl}^-\right)^n} \right),$$

в котором  $\Gamma_k$  — известные постоянные, определяемые из решения соответствующей системы линейных алгебраических уравнений 6-го порядка;  $\zeta_{kl}$  — переменные, определяемые из конформных отображений внешностей единичных кругов  $|\zeta_{kl}| \ge 1$  на внешности контуров  $L_{kl}$ ;  $\zeta_{kl}^+$ ,  $\zeta_{kl}^-$  — переменные, определяемые из конформных отображений

внешностей единичных кругов  $|\zeta_{kl}^+| \ge 1$  и  $|\zeta_{kl}^-| \ge 1$  на внешности соответственно контуров  $L_{kl}^+$  верхней (относительно границы  $L_k^+$ ) полуплоскости  $S_k^+$  и контуров  $L_{kl}^-$  нижней (относительно границы  $L_k^-$ ) полуплоскости  $S_k^-$ , симметричных относительно прямолинейных границ  $L_k^+$  и  $L_k^-$  контурам  $L_{kl}$ ;  $a_{kln}$ ,  $b_{kln}$ ,  $c_{kln}$  — неизвестные коэффициенты рядов Лорана, для определения которых используются граничные условия на прямолинейных границах и на контурах отверстий и трещин. Если для удовлетворения этим условиям использовать ОМНК, то для определения  $a_{kln}$ ,  $b_{kln}$ ,  $c_{kln}$  получается переопределенная система линейных алгебраических уравнений, которую можно решать методом сингулярного разложения.

Для случая действия на бесконечности механических изгибающих моментов  $M_x^{\infty}$  были проведены многочисленные исследования по изучению закономерностей распределения изгибающих моментов в полосе из различных пьезоматериалов с разного рода отверстиями и трещинами.

Исследованиями установлено, что с уменьшением расстояния между отверстием и прямолинейными границами полосы (рис. 2) значения моментов в точках перемычек и прямолинейных границ вблизи перемычек резко возрастают, незначительно изменяясь в остальных точках. При сближении границ полосы с выемами (рис. 3) значения моментов в зоне перемычки между этими выемами резко возрастают, и практически не изменяются на прямолинейных границах и вдали от перемычки.



**Информация о финансовой поддержке:** Исследования проводились в ФГБОУ ВО «ДонГУ» в рамках государственного задания (номер госрегистрации 124012400354-0).

#### Список литературы

1. Калоеров, С. А. Решение задачи об изгибе многосвязной пьезополуплоскости с приближенным удовлетворением граничным условиям на прямолинейной границе / С. А. Калоеров, А. В. Сероштанов // Вестн. Донец. нац. ун-та. Сер. А: Естеств. науки. – 2024. – № 1. – С. 28-41. – DOI: 10.5281/zenodo.12527097. – EDN: BYCRBC.

УДК 539.3:534.1

# ВОЗБУЖДЕНИЕ СДВИГОВЫХ ЭЛЕКТРОУПРУГИХ ВОЛН В СИММЕТРИЧНО-НЕОДНОРОДНОМ ПО ТОЛЩИНЕ ФУНКЦИОНАЛЬНО-ГРАДИЕНТНОМ ПЬЕЗОКЕРАМИЧЕСКОМ ПОЛУСЛОЕ

## Карасев Д.С.1,

Номбре С.Б. <sup>1,2</sup>, канд. физ.-мат. наук, доц., ORCID 0009- 0008-5417-589X, Сторожев С.В. <sup>1,2</sup>, д-р техн. наук, доц., ORCID 0000-0002-4198-3491, Фоменко М.В. <sup>1</sup>, канд. физ.-мат. наук, ORCID 0009-0003-9649-1827 

<sup>1</sup> ФГБОУ ВО «Донецкий государственный университет», г. Донецк, РФ 

<sup>2</sup>«Донбасская национальная академия строительства и архитектуры» — филиал ФГБОУ ВО «Национальный исследовательский Московский государственный строительный университет», г. Макеевка, ДНР, РФ 

vektor8899@ya.ru

Актуальность и цель исследования. Теоретические исследования процессов возбуждения электроупругих волн в пьезоактивных волноводах сохраняют актуальность в теоретическом и прикладном аспектах ввиду модификаций пьезоэлектрических новых материалов появления подлежащими учету усложненными физико-механическими свойствами пористости, многокомпонентности и неоднородности. Результаты таких исследований представляют важность ДЛЯ реализации проектноконструкторских разработок в области измерительной техники, технологий ультразвуковой сварки, акустоэлектроники и других высокотехнологичных приложений [1-4]. В данном контексте, целью описываемых в настоящей работе исследований разработка является численно-аналитического алгоритма решения задачи 0 возбуждении связанных сдвиговых электроупругих симметрично-неоднородном трансверсально-изотропном функционально-градиентном пьезокерамическом полуслое внешними электромеханическими

воздействиями, приложенными к его торцевой поверхности, на базе применения метода рядов по базисному множеству бегущих и краевых стоячих нормальных волн.

Постановка задачи и описание базисного множества нормальных электроупругих волн. Рассматривается отнесенный к нормированным координатам  $Ox_1x_2x_3$ симметрично-неоднородный ПО поперечной координате  $x_1$ , занимающий область

$$V = V^{(+)} \cup V^{(-)},$$

$$V^{(-)} = \{x_2 \ge 0, x_3 \in (-\infty, \infty), x_1 \in [-h, 0]\},$$

$$V^{(+)} = \{x_2 \ge 0, x_3 \in (-\infty, \infty), x_1 \in [0, h]\},$$

$$(1)$$

полуслой с условно выделяемыми составляющими  $V^{(+)}$  и  $V^{(-)}$ , плоские грани которого свободны от механических напряжений и покрыты тонкими короткозамкнутыми электродами. Полагается, что в подобластях  $V^{(+)}$ , материалами непрерывно-неоднородные полуслоя являются функционально-градиентные пьезокерамические линейно-поляризованные вдоль  $Ox_3$ , зеркально симметричные по свойствам относительно плоскости  $Ox_2x_3$  материалы гексагональной системы класса 6mm с физикомеханическими характеристиками вида

$$c_{ij}^{(\pm)}(x_1) = c_{ij0} \exp(\pm \lambda x_1), \quad e_{ij}^{(\pm)}(x_1) = e_{ij0} \exp(\pm \lambda x_1),$$

$$\epsilon_{ij}^{(\pm)}(x_1) = \epsilon_{ij0} \exp(\pm \lambda x_1), \quad \rho^{(\pm)}(x_1) = \rho_0 \exp(\pm \lambda x_1).$$
(2)

рассматриваемой Для модели силового возбуждения распространяющихся вдоль  $Ox_2$ , поляризованных коллинеарно  $Ox_3$ нормальных электроупругих SH –волн на электродированной торцевой поверхности полуслоя, полные системы разрешающих соотношений в областях  $V^{(+)}$ ,  $V^{(-)}$ , а также краевые условия на различных участках границы V имеют вид

$$\partial_{1}\sigma_{13} + \partial_{2}\sigma_{23} - \rho(x_{1})\ddot{u}_{3} = 0, \quad \partial_{1}D_{1} + \partial_{2}D_{2} = 0, \quad \partial_{j} = \partial/\partial x_{j} \quad (j = \overline{1, 2}); \quad (3)$$

$$\sigma_{13} = c_{44}(x_{1})\partial_{1}u_{3} + e_{15}(x_{1})\partial_{1}\varphi, \quad \sigma_{23} = c_{44}(x_{1})\partial_{2}u_{3} + e_{15}(x_{1})\partial_{2}\varphi; \quad (4)$$

$$D_{1} = -\varepsilon_{11}(x_{1})\partial_{1}\varphi + e_{15}(x_{1})\partial_{1}u_{3}, \quad D_{2} = -\varepsilon_{11}(x_{1})\partial_{2}\varphi + e_{15}(x_{1})\partial_{2}u_{3}; \quad (5)$$

$$(u_{30+}(x_{1}))_{x_{1}=0} = (u_{30-}(x_{1}))_{x_{1}=0}, \quad (\sigma_{130+}(x_{1}))_{x_{1}=0} = (\sigma_{130-}(x_{1}))_{x_{1}=0}, \quad (\varphi_{0+}(x_{1}))_{x_{1}=0} = (\varphi_{0-}(x_{1}))_{x_{1}=0}, \quad (6)$$

$$(D_{10+}(x_1))_{x_1=0} = (D_{10-}(x_1))_{x_1=0}, \quad (\sigma_{13}(x_1, x_2, t))_{x_1=\pm h} = 0,$$

$$(\phi(x_1, x_2, t))_{x_1=\pm h} = 0;$$

$$(\sigma_{22})_{x_1=0} = f(x_1) \exp(-i\omega t), \quad (\sigma_{22})_{x_1=0} = 0,$$

$$(\sigma_{22})_{x_1=0} = f(x_1) \exp(-i\omega t), \quad (\sigma_{22})_{x_1=0} = 0,$$

$$(\sigma_{22})_{x_1=0} = f(x_1) \exp(-i\omega t), \quad (\sigma_{22})_{x_1=0} = 0,$$

$$(\sigma_{22})_{x_1=0} = f(x_1) \exp(-i\omega t), \quad (\sigma_{22})_{x_1=0} = 0,$$

$$(\sigma_{22})_{x_1=0} = f(x_1) \exp(-i\omega t), \quad (\sigma_{22})_{x_1=0} = 0,$$

$$(\sigma_{22})_{x_1=0} = f(x_1) \exp(-i\omega t), \quad (\sigma_{22})_{x_1=0} = 0,$$

$$(\sigma_{23})_{x_2=0, x_1 \in [-h, h]} = f(x_1) \exp(-i\omega t), \quad (\varphi)_{x_2=0, x_1 \in [-h, h]} = 0.$$
 (7)

Применительно к волнам с круговой частотой  $\omega$ , волновым числом k, комплексными функциями волновых перемещений и потенциала квазистатического электрического поля

$$u_3(x_1, x_2, t) = u_{30\pm}(x_1) \exp(-i(\omega t - kx_2)),$$
  

$$\varphi(x_1, x_2, t) = \varphi_{0\pm}(x_1) \exp(-i(\omega t - kx_2)),$$
(8)

уравнения (3) принимают вид

$$\begin{aligned} c_{440}u_{30\pm}''(x_1) + e_{150}\varphi_{0\pm}''(x_1) + (\rho_0\omega^2 - c_{440}k^2)u_{30\pm}(x_1) - e_{150}k^2\varphi_{0\pm}(x_1) \pm & (9) \\ & \pm \lambda(c_{440}u_{30\pm}'(x_1) + e_{150}\varphi_{0\pm}'(x_1)) = 0 , \\ e_{150}u_{30\pm}''(x_1) - \varepsilon_{110}\varphi_{0\pm}''(x_1) - e_{150}k^2u_{30\pm}(x_1) + \varepsilon_{110}k^2\varphi_{0\pm}(x_1) \\ & \pm \lambda(e_{150}u_{30\pm}'(x_1) - \varepsilon_{110}\varphi_{0\pm}(x_1)) = 0 . \end{aligned}$$

Процедура их интегрирования, а также получения дисперсионных соотношений и представлений для элементов соответствующих систем базисных нормальных симметричных и антисимметричных электроупругих сдвиговых волн, описываемых решениями краевой задачи (8), (9), (6), представлена в работе [5]. Соответственно, амплитудные составляющие для характеристик поля возбуждаемых в полуслое волн на его торцевой поверхности могут быть представлены содержащими неопределенные коэффициенты  $A_p$  разложениями

$$u_3(x_1) = \sum_{p=1}^{\infty} A_p u_{30p\pm}(x_1), \quad \varphi(x_1) = \sum_{p=1}^{\infty} A_p \varphi_{0p\pm}(x_1), \tag{10}$$

$$\sigma_{23}(x_1) = \sum_{p=1}^{\infty} A_p(ik) \exp(\pm \lambda x_1) (c_{440} u_{30p\pm}(x_1) + e_{130} \varphi_{0p\pm}(x_1)),$$

в которых суммирование проводится по множествам корней  $k_p$  дисперсионного уравнения;

$$u_{30\,p\pm}(x_1)=a_{1\,p\pm}e^{\delta_{1\,p\pm}x_1}+a_{2\,p\pm}e^{\delta_{2\,p\pm}x_1}+a_{3\,p\pm}e^{\delta_{3\,p\pm}x_1}+a_{4\,p\pm}e^{\delta_{4\,p\pm}x_1}$$
, (11)  $\phi_{0\,p\pm}(x_1)=a_{1\,p\pm}\tau_{1\,p\pm}e^{\delta_{1\,p\pm}x_1}+a_{2\,p\pm}\tau_{2\,p\pm}e^{\delta_{2\,p\pm}x_1}+a_{3\,p\pm}\tau_{3\,p\pm}e^{\delta_{3\,p\pm}x_1}+a_{4\,p\pm}\tau_{4\,p\pm}e^{\delta_{4\,p\pm}x_1}$ ; для коэффициентов  $a_{jp\pm}$  ( $j=\overline{1,4}$ ) в представлениях (11), выражаемых через параметры полуслоя, для случая возбуждения симметричных электроупругих волн выполняются соотношения связи  $a_{1+}=a_{2-},\ a_{2+}=a_{1-},\ a_{3+}=a_{4-},\ a_{4+}=a_{3-}$ ; величины  $\tau_{jp\pm},\ \delta_{jp\pm}$  ( $j=\overline{1,4}$ ) обладают свойствами  $\delta_{1p+}=-\delta_{2\,p-},\ \delta_{2\,p+}=-\delta_{1\,p-},\ \delta_{3\,p+}=-\delta_{4\,p-},\ \delta_{4\,p+}=-\delta_{3\,p-}$  и имеют вид  $\tau_{jp+}=\tau_{jp-}=\tau_p=e_{150}/\varepsilon_{110}$  ( $j=\overline{1,4}$ ),  $\delta_{jp+}=(\mp\lambda+(-1)^j(\lambda^2+4k_p^2)^{1/2})/2$  ( $j=\overline{1,2}$ ),

$$\delta_{jp\pm}=(\mp\lambda+(-1)^j(\lambda^2-4((\rho_0\epsilon_{110}\omega^2)(c_{440}\epsilon_{110}+e_{150}^2)^{-1}-k_p^2)^{1/2})/2$$
 (  $j=\overline{3,4}$  ). С использованием представления

$$\sigma_{130\pm}(x_{1}) = \sum_{p=1}^{\infty} \exp(\pm \lambda x_{1})(ik_{p}) \left(a_{1p\pm}(c_{440} + e_{150}\tau)e^{\delta_{1p\pm}x_{1}} + a_{2p\pm}(c_{440} + e_{150}\tau)e^{\delta_{2p\pm}x_{1}} + a_{3p\pm}(c_{440} + e_{150}\tau)e^{\delta_{3p\pm}x_{1}} + a_{4p\pm}(c_{440} + e_{150}\tau)e^{\delta_{4p\pm}x_{1}}\right),$$

$$(12)$$

и представления (10) для  $\varphi(x_1)$ , на базе применения метода ортогональных рядов путем домножения функциональных равенств (7) на элементы множества  $\{\cos(n\pi x_1/h)\,(n=\overline{0,\infty})\}$  и интегрирования в пределах  $x_1\in[-h,h]$ , рассматриваемая задача сводится к редуцируемой бесконечной системе линейных алгебраических уравнений относительно коэффициентов  $A_p$ .

**Информация о финансовой поддержке:** Исследования проводились в ФГБОУ ВО «ДонГУ» в рамках государственного задания (№ госрегистрации 124012400354-0).

#### Список литературы

- 1. Yang, J. Dynamic anti-plane problems of piezoceramics and applications in ultrasonics a review / J. Yang, J. Wang // Acta Mech. Sol. Sin. 2008. Vol. 21, Issue 3. P. 207–220. DOI: 10.1007/s10338-008-0824-3.
- 2. Heywang, W. Piezoelectricity, evolution and future of a technology / W. Heywang, K. Lubitz, W. Wersing. Berlin: Springer, 2008. 581 p.
- 3. Uchino, K. Advanced Piezoelectric Materials / K. Uchino. Cambridge: Woodhead Publishing, 2011. 696 p.
- 4. Tanaka, S. Piezoelectric acoustic wave devices based on heterogeneous integration technology / S. Tanaka // Proc. 2014 IEEE Int. Freq. Control Symp. (FCS) (Taipei, Taiwan). 2014. P. 1–4. DOI: 10.1109/FCS.2014.6859994.
- 5. Карасев, Д. С. Методика анализа спектра сдвиговых электроупругих волн в пьезоактивном слое с симметричной поперечной неоднородностью / Д. С. Карасев, С. В. Сторожев, М. В. Фоменко // Вестн. Донец. нац. ун-та. Сер. А. Естеств. науки. 2024. № 1. С. 42–49. DOI: 10.5281/zenodo.12527338. EDN: DTHVGD.

# НЕЧЕТКО-МНОЖЕСТВЕННАЯ ОЦЕНКА УРОВНЕЙ РАЗБРОСОВ КОНТАКТНЫХ НАПРЯЖЕНИЙ В МОДЕЛИ СБОРКИ СОСТАВНОЙ ЦИЛИНДРИЧЕСКОЙ КОНСТРУКЦИИ МЕТОДОМ ГОРЯЧЕЙ ПОСАДКИ

Малютина Т.П. 1,2, канд. техн. наук, доц., ORCID 0009-0001-6669-6069, Павлыш В.Н.3, д-р техн. наук, проф.,
 Полянский Д.Д.2, ORCID 0009-0006-2839-906X,
 Сторожев С.В. 1,2, д-р техн. наук, доц., ORCID 0000-0002-4198-3491
 ФГБОУ ВО «Донецкий государственный университет», г. Донецк, РФ
 <sup>2</sup>«Донбасская национальная академия строительства и архитектуры» — филиал ФГБОУ ВО «Национальный исследовательский Московский государственный строительный университет», г. Макеевка, ДНР, РФ
 <sup>3</sup>ФГБОУ ВО «Донецкий национальный технический университет», г. Донецк, РФ t.p.malutina@donnasa.ru

Распространенным Актуальность И цель исследования. обеспечения технологическим приемом механического контакта вставляемых друг в друга цилиндрических конструкционных элементов является так называемая горячая посадка [1, 2], заключающаяся в том, что внутренний радиус внешнего соединяемого цилиндрического элемента делается меньшим наружного радиуса внутренней части конструкции, а сборка осуществляется после предварительного нагревания внешней части, что, в итоге, после охлаждения приводит к возникновению контактного давления между соединяемыми частями. При этом адекватная оценка контактного давления является важным фактором определения показателей прочности и надежности данных конструкций в условиях достаточно высокой параметрической неопределенности расчетной модели, связанной с разбросами значений исходных физико-механических и геометрических параметров, информация в отношении которых не всегда имеет корректную статистическую природу, обеспечивающую возможность применения вероятностно-стохастического подхода. Соответственно, условиях описания неконтрастности исходных параметров модели сборки составной цилиндрической конструкции методом горячей стандартизированными технологических данными o допусках субъективными экспертными оценками, методом учета параметрической неопределенности расчетной модели может выступать применение аппарата теории нечетких множеств [3, 4]. Целью представляемого исследования является разработка нечетко-множественной методики учета не имеющей строгого статистического характера неопределенной исходной информации об экзогенных параметрах расчетной модели определения составной цилиндрической контактных напряжений при сборке конструкции методом горячей посадки.

Постановка задачи и основные соотношения детерминистической версии модели. Согласно описываемой в [2] прикладной методике расчета двумерного осесимметричного контактного давления p и максимального касательного напряжения  $\tau$  в области контакта без учета эффектов термопластичности при горячей посадке соединяемых цилиндрических элементов в виде протяженных полых цилиндров из материалов с равными модулями Юнга, с радиусом внутренней граничной поверхности внутреннего элемента r=a, радиусом контактной поверхности в сцепленном состоянии r=b и внешним радиусом внешнего элемента r=c, искомые эндогенные характеристики детерминистического варианта модели имеют представления

$$p = F_p(a, b, c, E, \delta) = (E\delta/(2b^3))(b^2 - a^2)(c^2 - b^2)(c^2 - a^2)^{-1},$$
 (1)

$$\tau = F_{\tau}(a, b, c, E, \delta) = (E\delta/(2b^3))(b^2 - a^2)c^2(c^2 - a^2)^{-1},$$
 (2)

где E — модуль Юнга материалов соединяемых элементов;  $\delta$  — геометрический параметр увеличения внутреннего радиуса внешнего контактирующего элемента при реализации технологического приема горячей посадки.

Расчеты параметрической показателя неопреленности. Применение нечетко-множественного vчета факторов метолики параметрической неопределенности при определении величин контактного давления и максимального касательного напряжения базируется на переходе к нечетко-множественным аргументам в распространяемых на ТИП переменных помощью α –уровневого варианта модифицированного эвристического обобщения принципа функциональных расчетных соотношениях (1), (2). При учете фактора неконтрастности для всех исходных параметров модели a, b, c, E,  $\delta$ вводятся их описания нечетко-множественными величинами  $\tilde{a}$ ,  $\tilde{b}$ ,  $\tilde{c}$ ,  $\tilde{E}$ ,  $\tilde{\delta}$ в виде нормальных нечетких треугольных чисел, записываемых в форме разложений по множествам  $\alpha$  – уровней [3, 4]

$$\tilde{a} = \bigcup_{\alpha \in [0,1]} [\underline{a}_{\alpha}, \overline{a}_{\alpha}], \quad a_{\alpha} = (1-\alpha)a_{1} + \alpha a_{2}, \quad \overline{a}_{\alpha} = \alpha a_{2} + (1-\alpha)a_{3};$$

$$\tilde{b} = \bigcup_{\alpha \in [0,1]} [\underline{b}_{\alpha}, \overline{b}_{\alpha}], \quad \underline{b}_{\alpha} = (1-\alpha)b_{1} + \alpha b_{2}, \quad \overline{b}_{\alpha} = \alpha b_{2} + (1-\alpha)b_{3}; \dots;$$

$$\tilde{\delta} = \bigcup_{\alpha \in [0,1]} [\underline{\delta}_{\alpha}, \overline{\delta}_{\alpha}], \quad \underline{\delta}_{\alpha} = (1-\alpha)\delta_{1} + \alpha\delta_{2}, \quad \overline{\delta}_{\alpha} = \alpha\delta_{2} + (1-\alpha)\delta_{3}.$$

$$(3)$$

В форме аналогичных разложений по множествам  $\alpha$  — уровней определяются и неконтрастные нечетко-множественные параметры контактного давления  $\tilde{p}$  и максимальных касательных напряжений  $\tilde{\tau}$ 

$$\tilde{p} = \bigcup_{\alpha \in [0,1]} [\underline{p}_{\alpha}, \overline{p}_{\alpha}], \quad \tilde{\tau} = \bigcup_{\alpha \in [0,1]} [\underline{\tau}_{\alpha}, \overline{\tau}_{\alpha}]. \tag{4}$$

При определении величин  $\underline{p}_{\alpha}$ ,  $\overline{p}_{\alpha}$  и  $\underline{\tau}_{\alpha}$ ,  $\overline{\tau}_{\alpha}$  используются справедливые во всех областях определения функциональных зависимостей (1), (2) оценки

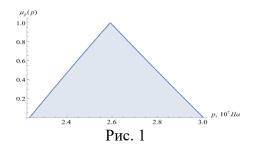
$$\partial F_p / \partial E \ge 0$$
,  $\partial F_p / \partial \delta \ge 0$ ,  $\partial F_p / \partial a \le 0$ ,  $\partial F_p / \partial c \ge 0$ ,  $\partial F_\tau / \partial E \ge 0$ ,  $\partial F_\tau / \partial \delta \ge 0$ ,  $\partial F_\tau / \partial a \le 0$ ,  $\partial F_\tau / \partial c \le 0$ ,

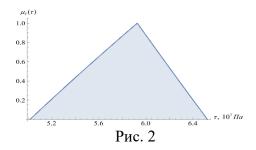
с учетом которых [3] можно получить

$$\underline{p}_{\alpha} = \inf_{b \in [\underline{b}_{\alpha}, \overline{b}_{\alpha}]} F_{p}(\overline{a}_{\alpha}, b, \underline{c}_{\alpha}, \underline{E}_{\alpha}, \underline{\delta}_{\alpha}), \quad \underline{p}_{\alpha} = \sup_{b \in [\underline{b}_{\alpha}, \overline{b}_{\alpha}]} F_{p}(\underline{a}_{\alpha}, b, \overline{c}_{\alpha}, \overline{E}_{\alpha}, \overline{\delta}_{\alpha}); (5)$$

$$\underline{p}_{\alpha} = \inf_{b \in [\underline{b}_{\alpha}, \overline{b}_{\alpha}]} F_{p}(\overline{a}_{\alpha}, b, \underline{c}_{\alpha}, \underline{E}_{\alpha}, \underline{\delta}_{\alpha}), \quad \overline{p}_{\alpha} = \sup_{b \in [\underline{b}_{\alpha}, \overline{b}_{\alpha}]} F_{p}(\underline{a}_{\alpha}, b, \overline{c}_{\alpha}, \overline{E}_{\alpha}, \overline{\delta}_{\alpha}); (5)$$

$$\underline{\tau}_{\alpha} = \inf_{b \in [\underline{b}_{\alpha}, \overline{b}_{\alpha}]} F_{\tau}(\overline{a}_{\alpha}, b, \overline{c}_{\alpha}, \underline{E}_{\alpha}, \underline{\delta}_{\alpha}), \quad \underline{\tau}_{\alpha} = \sup_{b \in [\underline{b}_{\alpha}, \overline{b}_{\alpha}]} F_{\tau}(\underline{a}_{\alpha}, b, \underline{c}_{\alpha}, \overline{E}_{\alpha}, \overline{\delta}_{\alpha}). (6)$$


Представляемый пример численной реализации описанной методики с использованием представлений (5), (6) относится к случаю задания неконтрастных исходных параметров треугольным нечеткими числами


$$\tilde{a} = (0.0988 \, l_*, 0.1 \, l_*, 0.103 \, l_*), \quad \tilde{b} = (0.14986 \, l_*, 0.15 \, l_*, 0.15002 \, l_*),$$

$$\tilde{c} = (0.19984 \, l_*, 0.2 \, l_*, 0.206 \, l_*), \quad \tilde{E} = (194 \, e_*, 200 \, e_*, 204 \, e_*),$$

$$\tilde{\delta} = (0.00011 \ l_*, 0.00012 \ l_*, 0.000128 \ l_*), \quad l_* = 1 \ m, \quad e_* = 10^9 \ \Pi a,$$

профили функций принадлежности для нечеткорассчитанные множественных эндогенных характеристик  $\tilde{p}$  и  $\tilde{\tau}$  для соединяемых элементов из стали соответственно представлены на рисунках 1 и 2.





Информация о финансовой поддержке: Исследования проводились в ФГБОУ ВО «ДонГУ» в рамках государственного задания (№ госрегистрации 124012400354-0).

#### Список литературы

- 1. Белкин, И. М. Допуски и посадки / И. М. Белкин. М.: Машиностроение, 1992. –
- 2. Тимошенко, С. П. Сопротивление материалов / С. П. Тимошенко. М.: Наука, 1965. 469 c.
- 3. Нгуен Куок Ши. Исследование моделей высокотемпературной термостабилизации с нечеткими параметрами / Нгуен Куок Ши, Чан Ба Ле Хоанг, С. В. Сторожев. – Yelm: Science Book Publishing House, 2019. – 216 c.
- 4. Hanss, M. Applied Fuzzy Arithmetic. An introduction with Engineering Application / M. Hanss. – Berlin, Heidelberg: Springer-Verlag, 2005. – 253 p.

# НЕКОТОРЫЕ ОБОБЩЕНИЯ РЕЗУЛЬТАТОВ ПРИМЕНЕНИЯ МНОГОФАКТОРНЫХ МОДЕЛЕЙ РАДИАЛЬНОЙ НЕОДНОРОДНОСТИ В ИССЛЕДОВАНИЯХ ВОЛНОВЫХ ПРОЦЕССОВ В ЦИЛИНДРИЧЕСКИХ НЕОДНОРОДНЫХ СТРУКТУРАХ

**Мельничук Н.Ю.,** ORCID 0009-0005-3618-431X  $\Phi$ ГБОУ ВО «Донецкий государственный университет», г. Донецк, РФ nata-250396@yandex.ru

Введение. Особую значимость приобретает изучение волновых процессов в цилиндрических структурах с функциональной радиальной неоднородностью материала, что находит применение в различных технических системах. Современные подходы к исследованию этих процессов на основе трехмерной линейной модели волновой механики базируются на использовании специальных многофакторных моделей радиальной неоднородности, позволяющих задавать модули упругости и плотность материала волновода через аналитические функции способом, обеспечивающим возможность построения целевых базисных наборов выраженных через аналитические функции частных решений уравнений математических моделей для соответствующих типов волновых процессов.

**Целью** данной работы является обобщение проведенных исследований как в области изучения свойств распространяющихся нормальных упругих волн в протяженных цилиндрах с учетом функциональной радиальной неоднородности изотропных и анизотропных материалов волноводов, так и для анализа эффективности использования предложенных многофакторных моделей радиальной неоднородности в задачах исследования характеристик различных типов волновых процессов в объектах указанного класса.

Исследование волновых процессов в функционально неоднородных протяженных цилиндрах потребовало привлечение новых математических моделей, способных учитывать независимые законы функциональной радиальной неоднородности всех физико-механических характеристик материала волновода. С применением предложенных многофакторных моделей неоднородности построены базисные наборы аналитических частных решений для задач о распространении нормальных упругих волн в протяженных изотропных [1–3] и трансверсально-изотропных [4–7] цилиндрах кругового и кругового секторного поперечных сечений, а также для задачи о распространении осесимметричных нормальных упругих волн продольно-сдвигового типа в ортотропных протяженных цилиндрах кругового поперечного сечения [8]. Таким образом, были разработаны и

исследованы: двухфакторная (случай крутильных волн) и трёхфакторные (случаи волн продольно-сдвигового типа и неосесимметричных волн) модели неоднородности для изотропных цилиндров; трехфакторная (случай крутильных волн) и шестифакторные (случаи волн продольно-сдвигового волн) неосесимметричных модели неоднородности трансверсально-изотропных цилиндров; восьмифакторные модели неоднородности для осесимметричных волн продольно-сдвигового типа в Для представленных ортотропных цилиндрах. всех моделей неоднородности предложены аналитический и численный подходы к определению используемых в моделях аналитических функций по заданным упруго-механическим характеристикам материала волновода, сформулированы легко проверяемые соответственно аналитические и численные достаточные условия несильной радиальной неоднородности, выполнение которых обеспечивает возможность построение целевых базисных наборов частных решений. Приведенные исследования создают основу для систематического обобщения и выявления закономерностей влияния фактора неоднородности по различным упруго-механическим характеристикам материала волновода на такие волновые характеристики, как топология дисперсионных спектров, фазовые и групповые скорости бегущих волн, кинематические и энергетические характеристики.

Заключение. Привлечение специальных многофакторных моделей функциональной радиальной неоднородности обеспечивает единый аналитический базис для построения целевых базисных наборов частных решений в задачах исследования широкого класса задач волнового деформирования изотропных и анизотропных цилиндрических структур. Эффективность указанных моделей проявляется также при проведении численных экспериментов, обеспечивая альтернативность выбора из нескольких вариантов модели неоднородности наиболее оптимальный с точки зрения временных затрат. Указанный выбор основывается на полученных достаточных условиях несильной радиальной неоднородности.

Дальнейшие исследования могут быть направлены на разработку подходов, снимающих или смягчающих ограничения, накладываемые достаточными условиями несильной радиальной неоднородности материала волновода.

**Информация о финансовой поддержке:** Исследования проводились в ФГБОУ ВО «ДонГУ» при финансовой поддержке Азово-Черноморского математического центра (Соглашение от 27.02.2025 № 075-02-2025-1608).

### Список литературы

1. Моисеенко, И. А. Модели функциональной неоднородности изотропного цилиндрического волновода для случая осесимметричных нормальных волн / И. А. Моисеенко, В. А. Моисеенко, Н. Ю. Мельничук // Журнал теоретической и прикладной механики. – 2023. – № 1(82). – С. 40–61. – DOI 10.24412/0136-4545-2023-1-40-61. – EDN EWIYSR.

- 2. Моисеенко, И. А. Исследование свойств изгибных волн в сплошных цилиндрах на основе трехфакторной модели радиальной неоднородности изотропного материала / И. А. Моисеенко, А. И. Дзундза, Н. Ю. Мельничук, В. А. Шалдырван // Журнал теоретической и прикладной механики. 2023. № 2(83). С. 5–25. DOI 10.24412/0136-4545-2023-2-5-25. EDN CWKADU.
- 3. Дзундза, А. И. Свойства нормальных волн в радиально-неоднородных изотропных цилиндрах секторного сечения / А. И. Дзундза, Н. Ю. Мельничук, И. А. Моисеенко, В. А. Моисеенко // Журнал теоретической и прикладной механики. 2024. № 1(86). С. 37–50. DOI 10.24412/0136-4545-2024-1-37-50. EDN LJJYHP.
- 4. Моисеенко, И. А. Исследование упругих волн крутильного типа с использованием трехфакторной модели функциональной неоднородности трансверсально изотропных сплошных цилиндрических волноводов / И. А. Моисеенко, Н. Ю. Мельничук // Журнал теоретической и прикладной механики. 2022. № 2(79). С. 5—15. DOI 10.24412/0136-4545-2022-2-5-15. EDN ATARHS.
- 5. Моисеенко, И. А. Осесимметричные продольно-сдвиговые упругие волны в протяженных сплошных цилиндрах из шестифакторно функционально неоднородного трансверсально-изотропного материала / И. А. Моисеенко, Н. Ю. Мельничук // Журнал теоретической и прикладной механики. 2022. № 3(80). С. 33–59. DOI 10.24412/0136-4545-2022-3-33-59. EDN NPEDMW.
- 6. Моисеенко, И. А. Исследование свойств неосесимметричных волн в протяженных цилиндрах на основе шестифакторной модели радиальной неоднородности трансверсально-изотропного материала / И. А. Моисеенко, Л. П. Вовк, А. И. Дзундза, Н. Ю. Мельничук // Журнал теоретической и прикладной механики. 2023. № 3(84). С. 61–81. DOI 10.24412/0136-4545-2023-3-61-81. EDN QUUGEC.
- 7. Вовк, Л. П. Нормальные волны в радиально-неоднородных трансверсально-изотропных цилиндрах секторного поперечного сечения / Л. П. Вовк, А. И. Дзундза, Н. Ю. Мельничук, И. А. Моисеенко // Журнал теоретической и прикладной механики. 2024. № 3(88). С. 20–34. DOI 10.24412/0136-4545-2024-3-20-34. EDN YYIVPO.
- 8. Вовк, Л. П. Исследование свойств осесимметричных нормальных волн в функционально-градиентных цилиндрах на основе многофакторных моделей радиальной неоднородности ортотропного материала / Л. П. Вовк, А. И. Дзундза, Н. Ю. Мельничук, И. А. Моисеенко, В. А. Моисеенко // Журнал теоретической и прикладной механики. 2024. № 4(89). С. 46–63. DOI 10.24412/0136-4545-2024-4-6-63. EDN IWWYCP.

# ИНТЕГРИРОВАНИЕ УРАВНЕНИЙ РАСПРОСТРАНЕНИЯ ЛОКАЛИЗОВАННЫХ ПРОДОЛЬНО-СДВИГОВЫХ ЭЛЕКТРОУПРУГИХ ВОЛН В ПОЛУПРОСТРАНСТВЕ ФУНКЦИОНАЛЬНО-ГРАДИЕНТНОЙ ПЬЕЗОКЕРАМИКИ С МНОГОФАКТОРНОЙ ПРИПОВЕРХНОСТНОЙ НЕОДНОРОДНОСТЬЮ

**Сторожев В.И.,** д-р техн. наук, проф., ORCID 0009-0006-8448-4963 ФГБОУ ВО «Донецкий государственный университет», г. Донецк, РФ stvistvi@mail.ru

Актуальность и цель исследования. Теоретическое изучение дисперсионных, кинематических и энергетических свойств локализованных электроупругих волн в волноводах в виде пьезоактивного полупространства В связи появлением новых модифицированных пористых, многокомпонентных и неоднородных пьезоэлектрических материалов представляет интерес с точки зрения расширения базы фундаментальных знаний в механике сопряженных полей и востребовано приложениями в области технологий разработки компонентов акустоэлектронной техники, измерительных приборов И ряда иных высокотехнологичных приложений [1, 2]. Эффективным подходом к анализу данной проблемы исследование, основывающееся является алгоритмах на аналитического интегрирования систем волновой динамики пьезоактивных сред соответствующих типов. Применительно к проблеме распространения локализованных сдвиговых электроупругих волн в трансверсальнофункционально-градиентном пьезокерамическом изотропном полупространстве многофакторной неоднородностью c алгоритм аналитического интегрирования системы волновых уравнений разработан в [3]. Соответственно, целью настоящей работы является решение актуальной задачи построения аналитического алгоритма интегрирования уравнений распространения локализованных продольно-сдвиговых электроупругих волн в полупространстве из функционально-градиентной обладающей пьезокерамики класса 6mm, описываемой двойными функциями многофакторной поперечной экспоненциальными приповерхностной неоднородностью.

Постановка и алгоритм решения задачи. Рассматривается пьезокерамический волновод в форме полупространства, занимающего в нормированных координатах  $Ox_1x_2x_3$  область  $V = \{x_3 \in [0, \infty), (x_1, x_2) \in R^2\}$ . Линейно-поляризованный функционально-градиентный материал полупространства обладает одноосной многофакторной приповерхностной неоднородностью, относится к классу 6mm гексагональной системы, имеет

ось поляризации  $Ox_3$  и переменные вдоль  $Ox_3$  параметры упругости  $c_{ij}(x_3)$ , плотности  $\rho(x_3)$ , пьезоэлектрические  $e_{ij}(x_3)$  и диэлектрические  $\varepsilon_{ij}(x_3)$  характеристики вида

$$\begin{aligned} c_{ij} &= c_{ij0} \exp(\lambda_{cij} \exp(-\beta_{cij} x_3)), \quad \rho = \rho_0 \exp(\lambda_{\rho} \exp(-\beta_{\rho} x_3)), \\ e_{ij} &= e_{ij0} \exp(\lambda_{eij} \exp(-\beta_{eij} x_3)), \quad \epsilon_{ij} = \epsilon_{ij0} \exp(\lambda_{\epsilon ij} \exp(-\beta_{\epsilon ij} x_3)) \\ &\qquad \qquad (\beta_{cij}, \beta_{\rho}, \beta_{eij}, \beta_{\epsilon ij} \geq 0). \end{aligned} \tag{1}$$

При введении для комплексных функций динамических перемещений  $u_j(x_1,x_2,x_3,t)$  и потенциала квазистатического электрического поля  $\varphi(x_1,x_2,x_3,t)$  в рассматриваемых волнах представлений

$$u_{1}(x_{1}, x_{3}, t) = u_{10}(x_{3}) \cdot \exp(-i(\omega t - kx_{1})),$$

$$u_{3}(x_{1}, x_{3}, t) = u_{30}(x_{3}) \cdot \exp(-i(\omega t - kx_{1})),$$

$$\varphi(x_{1}, x_{3}, t) = \varphi_{0}(x_{3}) \cdot \exp(-i(\omega t - kx_{1})),$$
(2)

и подстановке их в систему уравнений волнового деформирования пьезокерамики класса 6*mm* 

$$c_{11}(x_{3})\partial_{1}^{2} u_{1}(x_{1},x_{3},t) + \partial_{3}(c_{44}(x_{3})\partial_{3}u_{1}(x_{1},x_{3},t)) + \\ +c_{13}(x_{3})\partial_{1}\partial_{3}u_{3}(x_{1},x_{3},t)) + \partial_{3}(c_{44}(x_{3})\partial_{1}u_{3}(x_{1},x_{3},t)) + \\ +e_{31}(x_{3})\partial_{1}\partial_{3}\phi(x_{1},x_{3},t) + \partial_{3}(e_{15}(x_{3})\partial_{1}\phi(x_{1},x_{3},t)) - \rho(x)\partial_{t}^{2}u_{3}(x_{1},x_{3},t) = 0, \\ c_{44}(x_{3})\partial_{1}\partial_{3}u_{1}(x_{1},x_{3},t) + \partial_{3}(c_{13}(x_{3})\partial_{1}u_{1}(x_{1},x_{3},t)) + \\ +c_{44}(x_{3})\partial_{1}^{2}u_{3}(x_{1},x_{3},t) + \partial_{3}(c_{33}(x_{3})\partial_{3}u_{3}(x_{1},x_{3},t)) + \\ +e_{15}(x_{3})\partial_{1}^{2}\phi(x_{1},x_{3},t) + \partial_{3}(e_{33}(x_{3})\partial_{3}\phi(x_{1},x_{3},t)) - \rho(x)\partial_{t}^{2}u_{3}(x_{1},x_{3},t) = 0, \\ e_{15}(x_{3})\partial_{1}\partial_{3}u_{1}(x_{1},x_{3},t) + \partial_{3}(e_{31}(x_{3})\partial_{1}u_{1}(x_{1},x_{3},t)) + \\ +e_{15}(x_{3})\partial_{1}^{2}u_{3}(x_{1},x_{3},t) + \partial_{3}(e_{33}(x_{3})\partial_{3}u_{3}(x_{1},x_{3},t)) + \\ -\varepsilon_{11}(x_{3})\partial_{1}^{2}\phi(x_{1},x_{3},t) - \partial_{3}(\varepsilon_{33}(x_{3})\partial_{3}\phi(x_{1},x_{3},t)) = 0, \\ \partial_{i} = \partial_{i}/\partial x_{i}, \ \partial_{t} = \partial_{i}/\partial t, \end{cases}$$

интегрированию системы обыкновенных задача сводится коэффициентами дифференциальных уравнений переменными cамплитудных относительно функций  $u_{10}(x_3)$ ,  $u_{30}(x_3)$ ,  $\varphi_0(x_3)$ представлениях (2)

$$c_{440} \exp(\lambda_{c44} \exp(-\beta_{c44} x_3)) u_{10}''(x_3) - c_{110} k^2 \exp(\lambda_{c11} \exp(-\beta_{c11} x_3)) u_{10}(x_3) + (4) \\ + (c_{130} \exp(\lambda_{c13} \exp(-\beta_{c13} x_3)) + c_{440} \exp(\lambda_{c44} (-\beta_{c44} x_3))) ik u_{30}'(x_3) + \\ + (e_{150} \exp(\lambda_{e15} \exp(-\beta_{e15} x_3)) + e_{310} \exp(\lambda_{e31} \exp(-\beta_{e31} x_3)) ik \phi_0'(x_3) + \\ + \rho_0 \omega^2 \exp(\lambda_{\rho} \exp(-\beta_{\rho} x_3)) u_{10}(x_3) - \\ - c_{440} \lambda_{c44} \beta_{c44} \exp(-\beta_{c44} x_3) \exp(\lambda_{c44} \exp(-\beta_{c44} x_3)) (u_{10}'(x_3) + ik u_{30}(x_3)) - \\ - e_{150} \lambda_{e15} \beta_{e15} \exp(-\beta_{e15} x_3) ik \exp(\lambda_{e15} \exp(-\beta_{e15} x_3))) \phi_0(x_3) = 0, \\ (c_{130} \exp(\lambda_{c13} \exp(-\beta_{c13} x_3)) + c_{440} \exp(\lambda_{c44} \exp(-\beta_{c44} x_3)) ik u_{10}'(x_3) + \\ (c_{130} \exp(\lambda_{c13} \exp(-\beta_{c13} x_3)) + c_{440} \exp(\lambda_{c44} \exp(-\beta_{c44} x_3))) ik u_{10}'(x_3) + \\ (c_{130} \exp(\lambda_{c13} \exp(-\beta_{c13} x_3)) + c_{440} \exp(\lambda_{c44} \exp(-\beta_{c44} x_3))) ik u_{10}'(x_3) + \\ (c_{130} \exp(\lambda_{c13} \exp(-\beta_{c13} x_3)) + c_{440} \exp(\lambda_{c44} \exp(-\beta_{c44} x_3))) ik u_{10}'(x_3) + \\ (c_{130} \exp(\lambda_{c13} \exp(-\beta_{c13} x_3)) + c_{440} \exp(\lambda_{c44} \exp(-\beta_{c44} x_3))) ik u_{10}'(x_3) + \\ (c_{130} \exp(\lambda_{c13} \exp(-\beta_{c13} x_3)) + c_{440} \exp(\lambda_{c44} \exp(-\beta_{c44} x_3))) ik u_{10}'(x_3) + \\ (c_{130} \exp(\lambda_{c13} \exp(-\beta_{c13} x_3)) + c_{440} \exp(\lambda_{c44} \exp(-\beta_{c44} x_3))) ik u_{10}'(x_3) + \\ (c_{130} \exp(\lambda_{c13} \exp(-\beta_{c13} x_3)) + c_{240} \exp(\lambda_{c14} \exp(-\beta_{c44} x_3))) ik u_{10}'(x_3) + \\ (c_{130} \exp(\lambda_{c13} \exp(-\beta_{c13} x_3)) + c_{240} \exp(\lambda_{c14} \exp(-\beta_{c44} x_3))) ik u_{10}'(x_3) + \\ (c_{130} \exp(\lambda_{c13} \exp(-\beta_{c13} x_3)) + c_{240} \exp(\lambda_{c14} \exp(-\beta_{c44} x_3))) ik u_{10}'(x_3) + \\ (c_{130} \exp(\lambda_{c13} \exp(-\beta_{c13} x_3)) + c_{240} \exp(\lambda_{c14} \exp(-\beta_{c13} x_3)) + \\ (c_{130} \exp(\lambda_{c14} \exp(-\beta_{c13} x_3)) + c_{240} \exp(\lambda_{c14} \exp(-\beta_{c14} x_3)) + \\ (c_{130} \exp(\lambda_{c14} \exp(-\beta_{c14} x_3)) + c_{240} \exp(\lambda_{c14} \exp(-\beta_{c14} x_3)) + \\ (c_{130} \exp(\lambda_{c14} \exp(-\beta_{c14} x_3)) + c_{240} \exp(\lambda_{c14} \exp(-\beta_{c14} x_3)) + \\ (c_{130} \exp(\lambda_{c14} \exp(-\beta_{c14} x_3)) + c_{240} \exp(\lambda_{c14} \exp(-\beta_{c14} x_3)) + \\ (c_{130} \exp(\lambda_{c14} \exp(-\beta_{c14} x_3)) + c_{240} \exp(\lambda_{c14} \exp(-\beta_{c14} x_3)) + \\ (c_{130} \exp(\lambda_{c14} \exp(-\beta_{c14} x_3)) + c_{240} \exp(\lambda_{c14} \exp(-\beta_{c14} x_3)) + \\ (c_{130} \exp(\lambda_{c14} \exp(-\beta_{c$$

$$+c_{330}\exp(\lambda_{c33}\exp(-\beta_{c33}x_3))u_{30}''(x_3) - c_{440}\exp(\lambda_{c44}\exp(-\beta_{c44}x_3))k^2u_{30}(x_3) - c_{150}\exp(\lambda_{e15}\exp(-\beta_{e15}x_3))k^2\phi_0(x_3) + e_{330}\exp(\lambda_{e33}\exp(-\beta_{e33}x_3)\phi_0''(x_3) + c_{150}\exp(\lambda_{e15}\exp(-\beta_{e15}x_3))k^2\phi_0(x_3) + e_{330}\exp(\lambda_{e33}\exp(-\beta_{e33}x_3))u_{30}(x_3) - c_{130}\lambda_{c13}\beta_{c13}\exp(-\beta_{c13}x_3)ik\exp(\lambda_{c13}\exp(-\beta_{c13}x_3))u_{10}(x_3) - c_{330}\lambda_{c33}\beta_{c33}\exp(-\beta_{e33}x_3)\exp(\lambda_{e33}\exp(-\beta_{e33}x_3))u_{30}'(x_3) - e_{330}\lambda_{e33}\exp(-\beta_{e15}x_3)) + e_{310}\exp(\lambda_{e31}\exp(-\beta_{e31}x_3))iku_{10}'(x_3) + e_{310}\exp(\lambda_{e15}\exp(-\beta_{e15}x_3))k^2u_{30}(x_3) - e_{150}\exp(\lambda_{e15}\exp(-\beta_{e15}x_3))k^2u_{30}(x_3) + e_{110}\exp(\lambda_{e11}\exp(-\beta_{e11}x_3)))k^2\phi_0(x_3) - e_{330}\exp(\lambda_{e33}\exp(-\beta_{e33}x_3)\phi_0''(x_3) - e_{310}\lambda_{e31}\beta_{e31}\exp(-\beta_{e31}x_3)ik\exp(\lambda_{e31}\exp(-\beta_{e31}x_3))u_{10}(x_3) - e_{330}\lambda_{e33}\beta_{e33}\exp(-\beta_{e33}x_3)exp(\lambda_{e33}\exp(-\beta_{e33}x_3))u_{30}'(x_3) + e_{330}\lambda_{e33}\beta_{e33}\exp(-\beta_{e33}x_3)\exp(\lambda_{e33}\exp(-\beta_{e33}x_3))u_{30}'(x_3) + e_{330}\lambda_{e33}\beta_{e33}\exp(-\beta_{e33}x_3)exp(\lambda_{e33}\exp(-\beta_{e33}x_3))u_{30}'(x_3) + e_{330}\lambda_{e33}\beta_{e33}\exp(-\beta_{e33}x_3)exp(\lambda_{e33}\exp(-\beta_{e33}x_3))u_{30}'(x_3) - e_{330}\lambda_{e33}\beta_{e33}\exp(-\beta_{e33}x_3)exp(\lambda_{e33}\exp(-\beta_{e33}x_3))u_{30}'(x_3) + e_{330}\lambda_{e33}\beta_{e33}\exp(-\beta_{e33}x_3)exp(\lambda_{e33}\exp(-\beta_{e33}x_3))u_{30}'(x_3) - e_{330}\lambda_{e33}\beta_{e33}\exp(-\beta_{e33}x_3)exp(\lambda_{e33}\exp(-\beta_{e33}x_3))u_{30}'(x_3) - e_{330}\lambda_{e33}\beta_{e33}\exp(-\beta_{e33}x_3)exp(\lambda_{e33}\exp(-\beta_{e33}x_3))u_{30}'(x_3) + e_{330}\lambda_{e33}\beta_{e33}\exp(-\beta_{e33}x_3)exp(\lambda_{e33}\exp(-\beta_{e33}x_3))u_{30}'(x_3) - e_{330}\lambda_{e33}\phi_{e33}^2\exp(-\beta_{e33}x_3)exp(\lambda_{e33}\exp(-\beta_{e33}x_3))u_{30}'(x_3) - e_{330}\lambda_{e33}\phi_{e33}^2\exp(-\beta_{e33}x_3)exp(\lambda_{e33}\exp(-\beta_{e33}x_3)u_{$$

Далее, для функций, входящих в уравнения (4), вводятся следующие представления в форме степенных рядов

$$u_{10}(x_3) = \sum_{n=0}^{\infty} a_n x_3^n , \quad u_{10}'(x_3) = \sum_{n=0}^{\infty} (n+1)a_{n+1}x_3^n , \qquad (5)$$

$$u_{10}''(x_3) = \sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}x_3^n ;$$

$$u_{30}(x_3) = \sum_{n=0}^{\infty} b_n x_3^n , \quad u_{30}'(x_3) = \sum_{n=0}^{\infty} (n+1)b_{n+1}x_3^n ,$$

$$u_{30}''(x_3) = \sum_{n=0}^{\infty} (n+2)(n+1)b_{n+2}x_3^n ;$$

$$\phi_0(x_3) = \sum_{n=0}^{\infty} d_n x_3^n , \quad \phi_0'(x_3) = \sum_{n=0}^{\infty} (n+1)d_{n+1}x_3^n , \quad \phi_0''(x_3) = \sum_{n=0}^{\infty} (n+2)(n+1)d_{n+2}x_3^n ;$$

$$\exp(-\beta_{cij}x_3) = \sum_{m=0}^{\infty} \frac{(-\beta_{cij})^m}{m!} x_3^m , \dots, \quad \exp(-\beta_{cij}x_3) = \sum_{n=0}^{\infty} \frac{(-\beta_{cij})^m}{m!} x_3^m ;$$

$$\exp(\lambda_{cij} \exp(-\beta_{cij}x_3)) = \sum_{m=0}^{\infty} \frac{(\lambda_{cij} \exp(-\beta_{cij}x_3))^m}{m!} = \sum_{m=0}^{\infty} \frac{\lambda_{cij}^m}{m!} \exp(-m\beta_{cij}x_3) =$$

$$\sum_{m=0}^{\infty} \sum_{q=0}^{\infty} (-1)^n \frac{\lambda_{cij}^m}{m!} \frac{(m\beta_{cij})^q}{q!} x_3^q = \sum_{q=0}^{\infty} \Delta_{qcij}x_3^q \Delta_{qcij} = (-1)^q \frac{\beta_{cij}^q}{q!} \sum_{m=0}^{\infty} \frac{m^q \lambda_{cij}^m}{m!} ; \dots ;$$

$$\exp(\lambda_{\rho} \exp(-\beta_{\rho}x_3)) = \sum_{q=0}^{\infty} \Delta_{q\rho}x_3^q , \quad \Delta_{q\rho} = (-1)^q \frac{\beta_{\rho}^q}{q!} \sum_{m=0}^{\infty} \frac{m^q \lambda_{\rho}^m}{m!} ; \dots ;$$

$$\exp(-\beta_{cij}x_3)\exp(\lambda_{cij}\exp(-\beta_{cij}x_3)) = \sum_{q=0}^{\infty} \Omega_{qcij}x_3^q, \Omega_{qcij} = \sum_{m=0}^{q} \frac{(-\beta_{cij})^m}{m!} \Delta_{q-m, \, cij};$$

. . . ,

$$\exp(-\beta_{\epsilon ij}x_3)\exp(\lambda_{\epsilon ij}\exp(-\beta_{\epsilon ij}x_3)) = \sum_{q=0}^{\infty} \Omega_{q\epsilon ij}x_3^q, \ \Omega_{q\epsilon ij} = \sum_{m=0}^{q} \frac{(-\beta_{\epsilon ij})^m}{m!} \Delta_{q-m, \, \epsilon ij}.$$

При подстановке (5) в уравнения (4) последние преобразуются к виду

$$\sum_{p=0}^{\infty} \Phi_{np}^{(1)} x_3^p = 0, \quad \sum_{p=0}^{\infty} \Phi_{np}^{(2)} x_3^p = 0, \quad \sum_{p=0}^{\infty} \Phi_{np}^{(3)} x_3^p = 0, \tag{6}$$

и на основе приравнивания нулю величин  $\Phi_{np}^{(1)}$ ,  $\Phi_{np}^{(2)}$  и  $\Phi_{np}^{(3)}$  в представлениях (6) с варьированием  $p=\overline{0,\infty}$  для определения коэффициентов  $a_n$ ,  $b_n$ ,  $d_n$ ,  $(n=\overline{0,\infty})$  формируется система рекуррентных соотношений, позволяющих, в итоге, получить шесть базисных частных решений системы дифференциальных уравнений (4) с аналитическими представлениями в виде степенных рядов

$$u_{10q}(x_3, \omega, k) = \sum_{n=0}^{\infty} a_n^{(q)} x_3^n , u_{30q}(x_3, \omega, k) = \sum_{n=0}^{\infty} b_n^{(q)} x_3^n , \varphi_{0q}(x_3, \omega, k) = \sum_{n=0}^{\infty} d_n^{(q)} x_3^n .$$
 (7)

**Информация о финансовой поддержке**: Исследования проводились в ФГБОУ ВО «ДонГУ» при финансовой поддержке Азово-Черноморского математического центра (Соглашение от 27.02.2025 № 075-02-2025-1608).

#### Список литературы

- 1. Heywang, W. Piezoelectricity, evolution and future of a technology / W. Heywang, K. Lubitz, W. Wersing. Berlin: Springer, 2008. 581 p.
- 2. Uchino, K. Advanced Piezoelectric Materials / K. Uchino. Cambridge: Woodhead Publishing, 2011. 696 p.
- 3. Карасев, Д. С. Базисные решения уравнений распространения электроупругих сдвиговых волн в пьезокерамическом полупространстве с многофакторной приграничной неоднородностью / Д. С. Карасев, М. Н. Пачева, С. В. Сторожев, М. В. Фоменко // Вестн. Донец. нац. ун-та. Сер. А. Естеств. науки. 2025. № 1. С. 5—11. DOI: 10.5281/zenodo.14922466. EDN: WUYDEQ.

УДК 615.849

## УЧЕТ ФАКТОРОВ ПАРАМЕТРИЧЕСКОЙ НЕОПРЕДЕЛЕННОСТИ В МОДЕЛИ ДЕФОРМАЦИИ СТЕНКИ СОСУДА ПРИ ИЗМЕНЕНИИ ДАВЛЕНИЯ НА ЕГО ВНУТРЕННЕЙ И ВНЕШНЕЙ ПОВЕРХНОСТЯХ

*Сторожев В.И.*<sup>1</sup>, д-р техн. наук, проф., ORCID 0009-0006-8448-4963, *Сторожев С.В.*<sup>1, 2</sup>, д-р техн. наук, доц., ORCID 0000-0002-4198-3491, *Чан Ба Ле Хоанг* <sup>3</sup>, канд. техн. наук

<sup>1</sup>ФГБОУ ВО «Донецкий государственный университет», г. Донецк, РФ <sup>2</sup>«Донбасская национальная академия строительства и архитектуры» — филиал ФГБОУ ВО «Национальный исследовательский Московский государственный строительный университет», г. Макеевка, ДНР, РФ <sup>3</sup>Университет природных ресурсов и окружающей среды, г. Хошимин, Социалистическая Республика Вьетнам stvistvi@mail.ru

Актуальность и цель исследования. Как отмечено в публикациях [1, 2], одной из современных актуальных проблем математического моделирования в биомеханике остается исследование закономерностей механических деформаций стенок сосудов при изменении давления на их внутренней и внешней поверхностях, информация о которых необходима теоретических основ И практической прикладной конструкторской реализации гидроманжетного метода определения артериального давления и разработки алгоритмов оценки параметров, характеризующих состояние сердечно сосудистой системы на основе анализа данных о распространении пульсовой волны. Вместе с тем, при наличии работ, посвященных разработке таких моделей, мера адекватности получаемых на их основе оценок для характеристик деформаций и механических напряжений В стенках сосудов, помимо прочего, существенно зависит от учета в расчетных алгоритмах факторов параметрической неопределенности в виде значительных исходных параметров моделирования, свойственных рассматриваемым процессам и объектам в виде биологических тканей. Поскольку доступная при моделировании исходная информация не всегда имеет корректную статистическую природу, обеспечивающую возможность параметрической неопределенности на базе вероятностно-стохастического подхода, и в значительном числе случаев представлена субъективными экспертными оценками, методом учета параметрической неопределенности в моделях деформаций стенок сосудов, наряду с методами описания форм осциллирующих воздействий [3], может являться применение аппарата теории нечетких множеств [4, 5]. В данном контексте, целью описываемого исследования является разработка нечетко-множественной методики учета факторов неопределенности в виде разбросов значений исходных физикомеханических и геометрических параметров в модели деформации стенки сосуда при изменении давления на его внутренней и внешней поверхностях,

базирующейся на расширении областей определения аргументов функциональных расчетных соотношений детерминистического варианта анализируемой параметрически неопределенной модели на аргументы нечетко-множественных типов, представляющие ee неконтрастные исходные параметры, с поэтапным фрагментированным применением нечетких вычислений *α* – уровневой модификации аппарата И эвристического принципа обобщения, и в получении информации о прогнозируемых возможных разбросах значений эндогенных параметров рассматриваемой модели в виде профилей либо иных характеристик функций принадлежности для соответствующих нечетко-множественных величин.

Основные соотношения детерминистической версии модели. В рамках представленной в работе [2] модели сосуда, как осесимметрично деформирующейся толстостенной цилиндрической оболочки из биоматериала с модулем Юнга E и коэффициентом Пуассона v, имеющей собственный внешний  $R_i$  и внутренний  $R_o$  радиусы, и нагружаемой по внешней и внутренней поверхностям давлениями интенсивности  $p_o$  и  $p_i$ , обобщаемые на случай аргументов в виде нечетко-множественных величин функциональные соотношения для эндогенных характеристик упругих перемещений  $u_r(r)$ , радиальных  $\varepsilon_{rr}(r)$  и угловых  $\varepsilon_{\phi\phi}(r)$  деформаций, напряжений  $\sigma_{rr}(r)$ ,  $\sigma_{\phi\phi}(r)$ ,  $\sigma_{zz}(r)$ , имеют вид

$$\begin{split} u_r(r) &= F_u(r, v, E, p_o, p_i, R_o, R_i) = (1+v)E^{-1}(R_o^2 - R_i^2)^{-1}((1-2v)(p_oR_o^2 + p_iR_i^2)r + R_i^2R_o^2(p_o + p_i)r^{-1}) \,, \\ \varepsilon_{rr}(r) &= F_{\sigma r}(r, v, E, p_o, p_i, R_o, R_i) = (1+v)E^{-1}(R_o^2 - R_i^2)^{-1}((1-2v)(p_oR_o^2 + p_iR_i^2) - R_i^2R_o^2(p_o + p_i)r^{-2}) \,, \\ \varepsilon_{\phi\phi}(r) &= F_{\phi\phi\phi}(r, v, E, p_o, p_i, R_o, R_i) = (1+v)E^{-1}(R_o^2 - R_i^2)^{-1}((1-2v)(p_oR_o^2 + p_iR_i^2) + R_i^2R_o^2(p_o + p_i)r^{-2}) \,, \\ \sigma_{rr}(r) &= F_{\sigma rr}(r, p_o, p_i, R_o, R_i) = (R_o^2 - R_i^2)^{-1}((p_oR_o^2 + p_iR_i^2) - R_i^2R_o^2(p_o + p_i)r^{-2}) \,, \\ \sigma_{\phi\phi}(r) &= F_{\phi\phi\phi}(r, p_o, p_i, R_o, R_i) = (R_o^2 - R_i^2)^{-1}(-(p_oR_o^2 + p_iR_i^2) - R_i^2R_o^2(p_o + p_i)r^{-2}) \,, \\ \sigma_{zz}(r) &= F_{\phizz}(r, p_o, p_i, R_o, R_i) = (R_i^2 - R_o^2)^{-1}(p_oR_o^2 + p_iR_i^2) \,. \end{split}$$

**Расчеты нечетко-множественных экзогенных параметров модели.** При учете факторов неконтрастности для всех исходных параметров модели  $v, E, p_o, p_i, R_o, R_i$  вводятся их описания нечетко-множественными величинами  $\widetilde{v}, \widetilde{E}, \widetilde{p}_o, \widetilde{p}_i, \widetilde{R}_o, \widetilde{R}_i$  с разложениями по множествам  $\alpha$  —уровней [4, 5]  $v = \bigcup_{\alpha \in [0,1]} [\underline{v}_\alpha, \overline{v}_\alpha], \quad E = \bigcup_{\alpha \in [0,1]} [\underline{E}_\alpha, \overline{E}_\alpha], \quad p_o = \bigcup_{\alpha \in [0,1]} [\underline{p}_{o\alpha}, \overline{p}_{o\alpha}], \dots,$   $R_i = \bigcup_{\alpha \in [0,1]} [\underline{R}_{i\alpha}, \overline{R}_{i\alpha}]$  и с учетом справедливых при  $p_o \ge 0$ ,  $p_i \ge 0$  во всех областях определения функциональных зависимостей  $F_u(r, v, E, p_o, p_i, R_o, R_i), \dots,$   $F_{cc}(r, v, E, p_o, p_i, R_o, R_i)$  оценок  $\partial F_u/\partial E \le 0$ ,  $\partial F_u/\partial p_o \ge 0$ ,  $\partial F_u/\partial p_i \ge 0$ ;  $\partial F_{opp}/\partial E \le 0$ ,  $\partial F_{opp}/\partial p_o \ge 0$ ,  $\partial F_{opp}/\partial p_o \ge 0$ ,  $\partial F_{occ}/\partial p_o \ge 0$ ,  $\partial F_{occ}/\partial p_o \ge 0$ ,  $\partial F_{occ}/\partial p_o \ge 0$ ,  $\partial F_{ccc}/\partial p_o \ge 0$ ,

$$\begin{split} & \underline{u}_{r\alpha}(r) = \inf_{\substack{v \in [\underline{v}_{\alpha}, v_{\alpha}] \\ R_{\beta} \in [\underline{R}_{\alpha\alpha}, R_{\alpha\alpha}] \\ R_{\beta} \in [\underline{R}_{\alpha\alpha}, R_{\alpha\alpha}] \\ R_{\beta} \in [\underline{R}_{\alpha\alpha}, R_{\alpha\alpha}]}} F_{u}(r, v, \overline{E}_{\alpha}, \underline{p}_{o\alpha}, \underline{p}_{i\alpha}, R_{o}, R_{i}) , \ \underline{u}_{r\alpha}(r) = \sup_{\substack{v \in [\underline{v}_{\alpha}, v_{\alpha}] \\ R_{\beta} \in [\underline{R}_{\alpha\alpha}, R_{\alpha\alpha}] \\ R_{\beta} \in [\underline{R}_{\alpha\alpha}, R_{\alpha\alpha}]}} F_{u}(r, v, E_{\alpha}, \underline{p}_{o\alpha}, \underline{p}_{i\alpha}, R_{o}, R_{i}) , \ \underline{\varepsilon}_{rr\alpha}(r) = \sup_{\substack{v \in [\underline{v}_{\alpha}, v_{\alpha}] \\ P_{\beta} \in [\underline{p}_{\alpha\alpha}, P_{\alpha\alpha}] \\ R_{\beta} \in [\underline{R}_{\alpha\alpha}, R_{\alpha\alpha}]}} F_{or}(r, v, E_{\alpha}, \underline{p}_{o}, \underline{p}_{i\alpha}, R_{\alpha}, R_{i}) , \ \underline{\varepsilon}_{rr\alpha}(r) = \sup_{\substack{v \in [\underline{v}_{\alpha}, v_{\alpha}] \\ P_{\beta} \in [\underline{p}_{\alpha\alpha}, P_{\alpha\alpha}] \\ R_{\beta} \in [\underline{R}_{\alpha\alpha}, R_{\alpha\alpha}]}} F_{or}(r, v, E_{\alpha}, \underline{p}_{o}, \underline{p}_{i\alpha}, R_{o}, R_{i}) , \ \underline{\varepsilon}_{p\phi\alpha}(r) = \sup_{\substack{v \in [\underline{v}_{\alpha}, v_{\alpha}] \\ R_{\beta} \in [\underline{R}_{\alpha\alpha}, R_{\alpha\alpha}] \\ R_{\beta} \in [\underline{R}_{\alpha\alpha}, R_{\alpha\alpha}]}} F_{u}(r, v, \overline{E}_{\alpha}, \underline{p}_{o\alpha}, \underline{p}_{i\alpha}, R_{o}, R_{i}) , \ \underline{\varepsilon}_{p\phi\alpha}(r) = \sup_{\substack{v \in [\underline{v}_{\alpha}, v_{\alpha}] \\ R_{\beta} \in [\underline{R}_{\alpha\alpha}, R_{\alpha\alpha}] \\ R_{\beta} \in [\underline{R}_{\alpha\alpha}, R_{\alpha\alpha}]}} F_{or}(r, p_{o}, p_{i}, R_{o}, R_{i}) , \ \underline{\sigma}_{rr\alpha}(r) = \sup_{\substack{p_{\alpha} \in [\underline{p}_{\alpha\alpha}, P_{\alpha\alpha}] \\ R_{\beta} \in [\underline{R}_{\alpha\alpha}, R_{\alpha\alpha}]}} F_{or}(r, p_{o}, p_{i}, R_{o}, R_{i}) , \ \underline{\sigma}_{rr\alpha}(r) = \sup_{\substack{p_{\alpha} \in [\underline{p}_{\alpha\alpha}, P_{\alpha\alpha}] \\ R_{\beta} \in [\underline{R}_{\alpha\alpha}, R_{\alpha\alpha}]}} F_{or}(r, p_{o}, p_{i}, R_{o}, R_{i}) , \ \underline{\sigma}_{p\phi\alpha}(r) = \sup_{\substack{R_{\alpha} \in [\underline{R}_{\alpha\alpha}, R_{\alpha\alpha}] \\ R_{\beta} \in [\underline{R}_{\alpha\alpha}, R_{\alpha\alpha}]}}} F_{or}(r, p_{o}, p_{i}, R_{o}, R_{i}) , \ \underline{\sigma}_{p\phi\alpha}(r) = \sup_{\substack{R_{\alpha} \in [\underline{R}_{\alpha\alpha}, R_{\alpha\alpha}] \\ R_{\beta} \in [\underline{R}_{\alpha\alpha}, R_{\alpha\alpha}]}}} F_{or}(r, p_{o}, p_{i}, R_{o}, R_{i}) , \ \underline{\sigma}_{p\phi\alpha}(r) = \sup_{\substack{R_{\alpha} \in [\underline{R}_{\alpha\alpha}, R_{\alpha\alpha}] \\ R_{\beta} \in [\underline{R}_{\alpha\alpha}, R_{\alpha\alpha}]}}} F_{or}(r, p_{o}, p_{i}, R_{o}, R_{i}) , \ \underline{\sigma}_{p\phi\alpha}(r) = \sup_{\substack{R_{\alpha} \in [\underline{R}_{\alpha\alpha}, R_{\alpha\alpha}] \\ R_{\beta} \in [\underline{R}_{\alpha\alpha}, R_{\alpha\alpha}]}}}} F_{or}(r, p_{o}, p_{i}, R_{o}, R_{i}) , \ \underline{\sigma}_{p\phi\alpha}(r) = \sup_{\substack{R_{\alpha} \in [\underline{R}_{\alpha\alpha}, R_{\alpha\alpha}] \\ R_{\beta} \in [\underline{R}_{\alpha\alpha}, R_{\alpha\alpha}]}}} F_{or}(r, p_{o}, p_{i}, R_{o}, R_{i}) , \ \underline{\sigma}_{p\phi\alpha}(r) = \sup_{\substack{R_{\alpha} \in [\underline{R}_{\alpha\alpha}, R_{\alpha\alpha}] \\ R_{\beta} \in [\underline{R}_{\alpha\alpha}, R_{\alpha\alpha}]}}} F_{or}(r, p_{o}, p_{i}, R_{o}, R_{i}) , \ \underline{\sigma}_{p\alpha}(r) = \sup_{\substack{R_{\alpha} \in [\underline{R}_{\alpha\alpha}, R_{\alpha\alpha}]$$

Проведен цикл численных исследований рассматриваемой модели с заданием конкретных параметров биоматериала, геометрических характеристик сосудов и задаваемых параметров внешнего и внутреннего давления.

**Информация о финансовой поддержке:** Исследования проводились в ФГБОУ ВО «ДонГУ» при финансовой поддержке Азово-Черноморского математического центра (Соглашение от 27.02.2025 № 075-02-2025-1608).

- 1. Бегун, П. И. Моделирование в биомеханике / П. И. Бегун, П. Н. Афонин. М.: Высшая школа, 2004.-390 с.
- 2. Полосин, В. Г. Модель упругой оболочки в системе артерия манжета / В. Г. Полосин, С. И. Геращенко, М. С. Геращенко, О. Е. Безбородова // Надежность и качество сложных систем. 2023. № 3. С. 62–73. DOI: 10.21685/2307-4205-2023-3-8.
- 3. Wang, Jia-Jung. Modeling the Arterial Unloaded Situation in Oscillometric Blood Pressure Waveform Measurement Using Fuzzy Logic Control / Wang Jia-Jung, Liu Shing-Hong, Lin Chin-Teng, Hsieh Jui-Hsaing // Journal of Medical and Biological Engineering. 2001. Vol. 21. P. 93–104.
- 4. Hanss, M. Applied Fuzzy Arithmetic. An introduction with Engineering Application / M. Hanss. Berlin, Heidelberg: Springer-Verlag, 2005. 253 p.
- 5. Нгуен, Куок Ши. Исследование моделей высокотемпературной термостабилизации с нечеткими параметрами / Нгуен Куок Ши, Чан Ба Ле Хоанг, С.В. Сторожев. Yelm, WA, USA: Science Book Publishing House, 2019. 216 с.

### Математический анализ и дифференциальные уравнения

УДК 517.984.46

### УСЛОВИЕ МАКСИМАЛЬНОСТИ ИНДЕКСОВ ДЕФЕКТА ОПЕРАТОРА ШРЁДИНГЕРА С МАТРИЧНЫМИ ТОЧЕЧНЫМИ ВЗАИМОДЕЙСТВИЯМИ

**Будыка В.С.**<sup>1,2</sup>, канд. физ.-мат. наук, ORCID 0000-0003-4528-5778 
<sup>1</sup>«Донецкий институт управления» — филиал ФГБОУ ВО «Российская академия народного хозяйства и государственной службы при Президенте Российской Федерации», г. Донецк, РФ

 $^2$ ФГБНУ «Институт прикладной математики и механики», г. Донецк, РФ budyka.vik@gmail.com

**Введение.** Изучение операторов Шрёдингера с точечными взаимодействиями представляет значительный интерес как для физиков, так и для математиков. Это обусловлено их широким применением в квантовой механике для моделирования взаимодействий между частицами, а также важностью исследования связанных с ними математических вопросов.

Исследованию спектральных характеристик данных операторов посвящено большое количество работ (см., например, [1] - [7] и литературу в них).

Существует несколько способов анализа спектральных характеристик операторов Шрёдингера с точечными взаимодействиями. К таким методам относятся, например, построение матрицы монодромии для решения уравнения Шрёдингера, использование разложений в степенные ряды по спектральным параметрам, применение теории расширений.

В данной работе исследуется максимальность индексов дефекта операторов Шрёдингера с точечными взаимодействиями через решения операторов дифференцирования второго порядка на всех отрезках между точками взаимодействия.

Цель работы — получение условия максимальности индексов дефекта операторов Шрёдингера с матричными точечными взаимодействиями.

**Основная часть.** Основным объектом исследования является оператор Шрёдингера с матричными точечными взаимодействиями, ассоциированный в  $L^2(\mathbb{R}_+;\mathbb{C}^m)$  с формальным дифференциальным выражением

$$l_{X,\alpha} := -\frac{d^2}{dx^2} \otimes I_m + \sum_{x_n \in X} \alpha_n \delta(x - x_n). \tag{1}$$

Введём вначале предминимальный оператор  $H_{X,\alpha}^0 := -\frac{d^2}{dx^2} \otimes I_m$ ,

$$dom(H_{X,\alpha}^{0}) = \left\{ f \in W_{comp}^{2,2}(\mathbb{R}_{+}; \mathbb{C}^{m}) : f'(0+) = 0, f(x_{n}+) = f(x_{n}-), f'(x_{n}+) - f'(x_{n}-) = \alpha_{n}f(x_{n}) \right\}.$$

 $X = \{x_n\}_1^{\infty} \subset I = (0,b), b \leq \infty,$  — строго Здесь последовательность с  $x_0 := 0, x_{n+1} > x_n, x_n \to b,$  и  $\alpha \coloneqq \{\alpha_n\}_1^{\infty} (\subset \mathbb{C}^{m \times m}),$  $\alpha_n=\alpha_n^*, n\in\mathbb{N}.$  Пусть  $d_n:=x_n-x_{n-1}>0.$ 

Минимальный оператор  $H_{X,\alpha}$ , ассоциированный с формальным выражением (1), определяется как замыкание оператора  $H^0_{X,\alpha}$  в  $L^2(\mathbb{R}_+;\mathbb{C}^m)$ .

В работе [4] для m=1 и в [6] для  $m \ge 1$  установлено, что некоторые спектральные свойства минимального оператора  $H_{\chi,\alpha}$ , ассоциированного с выражением (1), идентичны соответствующим спектральным свойствам минимального блочного якобиева оператора  $J_{X,\alpha}(H)$ , ассоциированного в  $l^2(\mathbb{N}_0;\mathbb{C}^m)$  с блочной якобиевой матрицей вида

$$J_{X,\alpha}(H) = \begin{pmatrix} O_m & \frac{1}{d_1^2}I_m & O_m & O_m & O_m & \dots \\ \frac{1}{d_1^2}I_m & -\frac{1}{d_1^2}I_m & \frac{1}{d_1^{3/2}d_2^{1/2}}I_m & O_m & O_m & \dots \\ O_m & \frac{1}{d_1^{3/2}d_2^{1/2}}I_m & \frac{\alpha_1}{d_2} & \frac{1}{d_2^2}I_m & O_m & \dots \\ O_m & O_m & \frac{1}{d_2^2}I_m & -\frac{1}{d_2^2}I_m & \frac{1}{d_2^{3/2}d_3^{1/2}}I_m & \dots \\ O_m & O_m & O_m & \frac{1}{d_2^{3/2}d_3^{1/2}}I_m & \frac{\alpha_2}{d_3} & \dots \\ \dots & \dots & \dots & \dots & \dots \end{pmatrix}$$
 Здесь  $O_m$  и  $I_m$  — нулевой и единичный операторы в  $\mathbb{C}^{m \times m}$ ,  $\mathbb{N}_0 \coloneqq \mathbb{N} \cup \{0\}$ .

 $\mathbb{N}_0 := \mathbb{N} \cup \{0\}.$ 

В данном исследовании изучается максимальность индексов дефекта матричного оператора  $H_{{\scriptscriptstyle X},\alpha}$  без использования якобиевой матрицы, связанной с ним.

**Теорема.** Пусть  $\alpha \coloneqq \{\alpha_n\}_1^\infty \subset \mathbb{C}^{m \times m}$  — последовательность самосопряжённых  $m \times m$ -матриц,  $\alpha_n = \alpha_n^*$ ,  $n \in \mathbb{N}$ . Предположим также, что выполнено следующее условие:

$$\sum_{n=2}^{\infty} d_n \prod_{k=1}^{n-1} \left( 1 + \| \alpha_k \|_{\mathbb{C}^{m \times m}} \right)^2 < +\infty.$$
 (2)

**Замечание.** Кроме того, используя связь между якобиевым оператором  $J_{X,\alpha}(H)$  и оператором Шрёдингера  $H_{X,\alpha}$ , можно заключить, что при выполнении условия (2) индексы дефекта якобиева оператора  $J_{X,\alpha}(H)$  также максимальны.

Заключение. Получено новое условие максимальности индексов Шрёдингера операторов матричными c точечными взаимодействиями, а также якобиевых операторов, связанных с ними. Спектральные характеристики операторов являются одним из важнейших объектов изучения спектральной теории В обыкновенных дифференциальных операторов, а якобиевы операторы выступают в качестве эффективного аппарата для исследования данных характеристик.

В данной работе продолжаем исследование результатов, полученных в статьях [3] и [5].

Информация о финансовой поддержке: Работа выполнена в рамках государственного задания Министерства науки и высшего образования Российской Федерации (тема № 1023020800027-5-1.1.1).

- 1. Albeverio, S. Solvable models in quantum mechanics / S. Albeverio, F. Gesztesy, R. Hoegh-Krohn, H. Holden Providence: AMS Chelsea Publishing, 2005. 452 p. ISBN 978-3-642-88203-6.
- 2. Albeverio, S. Singular perturbations of differential operators and Schrödinger type operators / S. Albeverio, P. Kurasov Cambridge University Press, 2000. 429 p. ISBN 978-0-511-75890-4.
- 3. Budyka, V. S. Deficiency indices and discreteness property of block Jacobi matrices and Dirac operators with point interactions / V. S. Budyka, M. M. Malamud // J. Math. Anal. Appl. 2022. Vol. 506, № 1. Paper № 125582. DOI: 10.1016/j.jmaa.2021.125582.
- 4. Kostenko, A. S. M. M. 1-D Schrodinger operators with local point interactions on discrete set / A. S. Kostenko, M. M. Malamud // J. Differential Equations 2010. No. 249. P.253–304. DOI: 10.1016/J.JDE.2010.02.011.
- 5. Будыка, В. С. Индексы дефекта блочных якобиевых матриц, не удовлетворяющих условию Карлемана, и операторы с точечными взаимодействиями / В. С. Будыка, М. М. Маламуд, И. Л. Покровский // Матем. заметки. 2023. Т. 114, № 5. С. 789–795. DOI: 10.4213/mzm14040.
- 6. Костенко, А. С. Матричный оператор Шрёдингера с δ-взаимодействиями / А. С. Костенко, М. М. Маламуд, Д. Д. Натягайло // Матем. заметки 2016. Т. 100, No. 1. С. 59–77. DOI: 10.4213/mzm11122.
- 7. Мирзоев, К. А. Об индексе дефекта векторного оператора Штурма—Лиувилля / К. А. Мирзоев, Т. А. Сафонова // Матем. заметки 2016. Т. 99, вып. 2. С. 262—277. DOI: 10.4213/mzm10854.

### О НОСИТЕЛЯХ ФУНКЦИЙ С НЕКОТОРЫМИ ИНТЕГРАЛЬНЫМИ УСЛОВИЯМИ

**Волчков А.В.**, ORCID 0009-0009-7043-3059,

**Руссиян С.А.,** канд. техн. наук, доц., ORCID 0009-0000-6529-3228 ФГБОУ ВО «Донецкий национальный технический университет», г. Донецк, РФ a.v.volchkov06@mail.ru, st~russ@mail.ru

В работе изучаются свойства функций, удовлетворяющих обобщенному условию периодичности в среднем. Показано, что при определенных требованиях такие функции определяются единственным образом по своим значениям в подходящей цилиндрической области.

Пусть  $B_{\rho}$  (соответственно,  $S_{\rho}$ ) — открытый шар (соответственно, сфера) радиуса  $\rho$  с центром в нуле в евклидовом пространстве  $\mathbb{R}^n$ ,  $\overline{B}_{\rho} = B_{\rho} \cup S_{\rho}$ . Основным результатом работы является следующая теорема.

**Теорема 1.** Пусть  $0 < r < R \le +\infty$ ,  $g - padиальная непрерывная функция в шаре <math>\overline{B}_r$ , носитель которой содержит  $S_r$ . Предположим, что f - ненулевая функция класса  $C^{\infty}(B_R \times \mathbb{R})$ , удовлетворяющая следующим условиям:1)  $f(x,t) = f(x,t+2\pi)$  при  $(x,t) \in B_R \times \mathbb{R}$ ; 2) если  $(x,t) \in B_{R-r} \times (0,2\pi)$ , то  $\int_{B_r} f(x-y,t+h(x,y))g(y)dy = 0$ , где функция h имеет вид  $h(x,y) = \chi(x-y) + \psi(y) + \varphi(x)$ ,  $\chi \in C^{\infty}(B_R)$ ,  $\psi - padиальная$  непрерывная функция  $g \in \overline{B}_r$ . Тогда  $(B_r \times (0,2\pi)) \cap suppf \neq \emptyset$ , где suppf - носитель функции f.

Отметим, что при n=1 условие радиальности функций g и  $\psi$  выше можно опустить, а вместо гладкости функций f и  $\chi$  достаточно предполагать лишь их непрерывность. Теорема 1 является обобщением некоторых хорошо известных результатов о множествах единственности для периодических в среднем функций на  $\mathbb{R}^n$  (см. [1–3]).

- 1. Любич, Ю. И. Об одном классе интегральных уравнений / Ю.И. Любич // Матем. сб. -1956. -T. 80, № 2. -C. 183-202.
- 2. Smith, J. D. Harmonic analysis of scalar and vector fields in  $\mathbb{R}^n$  / J. D. Smith // Proc. Camb. Phil. Soc. -1972. Vol. 72. pp. 403-416.
- 3. Volchkov, V. V. Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg Group / V. V. Volchkov, Vit. V. Volchkov London: Springer, 2009. 671 p. DOI 10.1007/978-1-84882-533-8.

### ПРОБЛЕМЫ ИНЪЕКТИВНОСТИ ДЛЯ ИНТЕГРАЛЬНЫХ ПРЕОБРАЗОВАНИЙ, СВЯЗАННЫХ С ШАРОВЫМИ СРЕДНИМИ

**Волчков В.В.,** д-р физ.-мат. наук, проф., ORCID 0009-0009-9443-8399, **Мисакордзиян А.О.,** ORCID 0009-0004-4797-482X

ФГБОУ ВО «Донецкий государственный университет», г. Донецк, РФ valeriyvolchkov@gmail.com, kuganov.00@gmail.com

Предметом изучения интегральной геометрии являются преобразования, которые сопоставляют функциям из заданного класса $\mathcal{F}$  на многообразии X их интегралы по подмногообразиям в X из заданного множества Y. Для всякого такого преобразования I возникают следующие задачи.

- 1. Выяснить, является ли I инъективным, и если не является, то найти его ядро.
- 2. Если I инъективно, то найти обратное к I преобразование на его области определения.

Эти вопросы впервые были поставлены Г. Минковским в 1904 г. [1] для следующего случая:  $X = \mathbb{S}^2 = \{\xi \in \mathbb{R}^3 : |\xi| = 1\}, F = C(\mathbb{S}^2), Y -$  семейство всех замкнутых геодезических (больших окружностей) на  $\mathbb{S}^2$ , а

$$(If)(\gamma) = \int_{\gamma} f(\xi)dl(\xi), \qquad \gamma \in Y, \tag{1}$$

где dl — элемент длины дуги. Г. Минковский установил, что ядро преобразования (1) совпадает с классом нечётных непрерывных функций на  $\mathbb{S}^2$  и применил этот результат для решения некоторых проблем в теории выпуклых тел (см. [2], [3, ч. 3, §17]).

Впоследствии указанные задачи для различных случаев анализировались многими учёными (см. [4–8] и библиографию к этим работам). Наиболее изученными примерами преобразований I являются преобразование Радона (см. [4–6]) и преобразование Помпею (см. [6–8]).

Современные исследования акцентируют внимание на обобщениях интегрально-геометрических преобразований, включающих интегрирование функций с весовыми коэффициентами (см. [8–11]). Аналогичные задачи для таких преобразований играют важную роль в приложениях к анализу (см. [6–8]). Их изучение часто связано с дополнительными сложностями, требующими разработки новых подходов и методов. Например, для преобразования Радона с весом применялась техника микролокального анализа (см. (9), [10]).

С середины 60-х годов XX века активно исследовались условия, при которых функция из ядра преобразования I должна быть тождественно

равна нулю (см. [4–8]). В частности, для преобразования Минковского была доказана теорема единственности (см. [5, гл. 3, теорема 1.25], [12], (13)).

Пусть  $J_{\nu}$  — функция Бесселя первого рода порядка  $\nu$ , обозначим шар  $B_R = \{x \in \mathbb{R}^n : |x| < R\}, \ R > 0$ . Пусть также  $r_1, \ r_2 \in (0,R)$  фиксированы. Обозначим через  $\mathcal{B}(R,r_1,r_2)$  семейство всех шаров, содержащихся в  $B_R$  и принадлежащих одному из следующих множеств:

- 1) множество всех замкнутых шаров радиуса  $r_1$ ;
- 2) множество всех замкнутых шаров с центрами на сфере радиуса  $r_2$  с центром в нуле.

Пусть  $W_n$  — множество чисел вида  $\alpha/\beta$ , где  $\alpha$ ,  $\beta>0$ ,  $J_{\frac{n}{2}}(\alpha)=0$  и  $J_{\frac{n}{2}+k-1}(\beta)=0$  при некотором  $k\in\mathbb{Z}_+$ .

Основным результатом данной работы является следующая теорема.

**Теорема 1.** Пусть  $f \in L_{loc}(B_R)$  и

$$\int_{B} f(x)dx = 0$$

для любого  $B \in \mathcal{B}(R, r_1, r_2)$ . Пусть также  $r_1 + r_2 < R \ u \ r_1/r_2 \notin W_n$ . В таком случае f = 0.

Эта теорема сопоставима с известными теоремами о двух радиусах, сформулированными Ж. Дельсартом, Л. Зальцманом и другими (см. [13–15]). О других результатах, связанных с классическим преобразованием Радона и его обобщениями, см. [4, 10, 12] и библиографию к ним.

**Информация о финансовой поддержке:** Исследование проводилось в рамках государственного задания Министерства науки и высшего образования Российской Федерации (тема № 1023020800027-5-1.1.1 и тема № 124012400352-6).

- 1. Минковский,  $\Gamma$ . О телах постоянной ширины /  $\Gamma$ . Минковский // Математический сборник. 1905. Т. 6, № 3. С. 505–508.
- 2. Паламодов, В. П. Интегральная геометрия и компьютерная томография / В. П. Паламодов // Математическое образование. 1997. № 1. С. 28—37.
- 3. Кириллов, А. А. Элементы теории представлений [2-е изд.] / А. А. Кириллов. Москва: Наука, 1978. 339 с.
- 4. Хелгасон, С. Группы и геометрический анализ / С. Хелгасон Москва: Мир, 1987. 736 с. DOI: 10.1090/surv/083.
- 5. Helgason, S. Integral Geometry and Radon Transforms / S. Helgason New York: Springer, 2011. 301 p. DOI: 10.1007/978-1-4419-6055-9.
- Volchkov, V. V. Integral Geometry and Convolution Equations / V. V. Volchkov, Vit. V. Volchkov – Dordrecht: Kluwer Academic Publishers, 2003. – 454 p. – DOI: 10.1007/978-94-010-0023-9.
- 7. Volchkov, V. V. Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg Group / V. V. Volchkov, Vit. V. Volchkov London: Springer, 2009. 671 p. DOI: 10.1007/978-1-84882-533-8.

- 8. Volchkov, V. V. Offbeat Integral Geometry on Symmetric Spaces / V.V. Volchkov, Vit.V. Volchkov Basel: Birhkäuser, 2013. 592 p. DOI: 10.1007/978-3-0348-0572-8.
- 9. Quinto, E. T. Pompeiu Transforms on Geodesic Spheres in Real Analytic Manifolds / E.T. Quinto // Israel Journal of Mathematics. 1993. Vol. 84, № 3. pp. 353–363. DOI: 10.1007/BF02760948.
- 10. Quinto, E. T. Radon Transforms on Curves in the Plane / E. T. Quinto // Lectures in Appl. Math. 1994. Vol. 30. pp. 231–244.
- 11. Zhou, Y. Two Radius Support Theorem for the Sphere Transform / Y. Zhou // Journal of Mathematical Analysis and Applications. 2001. Vol. 254, № 1. pp. 120–137. DOI: 10.1006/jmaa.2000.7248.
- 12. Zalcman, L. Analyticity and the Pompeiu Problem / L. Zalcman // Archive for Rational Mechanics and Analysis. 1972. Vol. 47. pp. 237–254. DOI: 10.1007/BF00250628.
- 13. Smith, J.D. Harmonic Analysis of Scalar and Vector Fields in  $\mathbb{R}^n$  / J.D. Smith // Mathematical Proceedings of the Cambridge Philosophical Society. 1972. Vol. 72, No. 3. P. 403–416.
- 14. Berenstein, C.A. A Local Version of the Two-Circles Theorem / C.A. Berenstein, R. Gay // Israel Journal of Mathematics. 1986. Vol. 55. P. 267–288. DOI: 10.1007/BF02765026.
- 15. Berenstein, C.A. Inversion of the Local Pompeiu Transform / C.A. Berenstein, R. Gay, A. Yger // Journal d'Analyse Mathématique. 1990. Vol. 54. pp. 259–287. DOI: 10.1007/BF02796152.

УДК 517.987

### ГОМЕОМОРФИЗМ ПЛОСКИХ ОБЛАСТЕЙ С УСЛОВИЕМ СОХРАНЕНИЯ МЕРЫ

**Волчков В.В.**, д-р физ.-мат. наук, проф., ORCID 0009-0009-9443-8399, **Пилипенко И.С.**, ORCID 0009-0006-6710-7066

ФГБОУ ВО «Донецкий государственный университет», г. Донецк, РФ valeriyvolchkov@mail.ru, irinasergeevnapilipenko@yandex.ru

Введение и постановка задачи. Пусть X — непустое открытое подмножеств вещественного евклидова пространства  $\mathbb{R}^n, n \geq 2$ . Будем говорить, что гомеоморфизм  $F: X \longrightarrow \mathbb{R}^n$  сохраняет меру, если для любого измеримого по Лебегу множества  $A \subset X$  его —мерная лебегова мера  $m_n(A)$  совпадает с  $m_n(F(A))$ , где

$$F(A) = \{x \in \mathbb{R}^n : F^{-1}(x) \in A\}.$$

Обозначим через MP(X) множество всех гомеоморфизмов  $F: X \to \mathbb{R}^n$ , сохраняющих меру. Отображения со свойством сохранения меры играют важную роль в теории информации, эргодической теории и других областях (см., например, [1, гл. 5, §7]).

В монографии [1, гл. 5, §7] поставлена следующая проблема 1.

**Проблема 1.** Пусть  $\mathcal{A}-$  некоторая совокупность измеримых подмножеств X. Пусть также гомеоморфизм  $F: X \longrightarrow \mathbb{R}^n$  удовлетворяет условию

$$m_n(A) = m_n(F(A))$$
 для любого  $A \in \mathcal{A}$ . (1)

При каких условиях на  $\mathcal{A}$  можно утверждать, что  $F \in MP(X)$ ?

Например, если  $\mathcal{A}$  состоит из всех подмножеств X нулевой меры, то этого утверждать нельзя (условие (1) выполняется для любого  $\mathcal{C}^1$  — диффеоморфизма  $F: X \to \mathbb{R}^n$ ). В этом случае (1) является известным - условием Лузина, введённым в 1915 г.

Далее будем обозначать через HN(X) множество всех гомеоморфизмов  $F: X \to \mathbb{R}^n$ , удовлетворяющих —условию. Очевидно,  $MP(X) \subset HN(X)$ .

В данной работе рассматривается случай, когда n=2, а  $\mathcal{A}$  состоит из всех замкнутых единичных квадратов и всех замкнутых единичных полукругов, лежащих в области  $X \subset \mathbb{R}^n$ .

**Основная часть.** Перейдём к формулировкам основных результатов работы. Нам потребуются следующие определение.

**Определение 1.** Пусть  $r_1, r_2 > 0$ . Открытое множество  $G \subset \mathbb{R}^n$  будем называть  $(r_1, r_2)$ -областью, если выполняются следующие условия:

- 1. G содержит замкнутый шар радиуса  $r_1$ ;
- 2. G является объединением замкнутых шаров радиуса  $r_2$ ;
- 3. центры двух любых замкнутых шаров радиуса  $r_2$ , содержащихся в G, можно соединить ломаной так, что всякий замкнутый шар радиуса  $r_2$  с центром на этой ломаной содержится в G.

**Теорема 1.** Пусть множество  $X \subset \mathbb{R}^2$  является  $(r_1, r_2)$ -областью при  $r_1 = \frac{\sqrt{65}}{8}, r_2 = \frac{\sqrt{2}}{2}$ . Пусть также  $F \in HN(X)$  и условие (1) выполнено для всех замкнутых единичных квадратов и всех замкнутых единичных полукругов, лежащих в X. Тогда  $F \in MP(X)$ .

**Теорема 2.** Пусть  $r_1 > 0$ ,  $r_2 = \frac{\sqrt{2}}{2}$ . Тогда существует область  $X \subset \mathbb{R}^2$ , удовлетворяющая следующим условиям:

- 1. X содержит замкнутый круг радиуса  $r_1$ ;
- 2. X является объединением замкнутых кругов радиуса  $r_2$ ;
- 3. для области X утверждение теоремы 1 не выполняются даже для  $C^{\infty}$ -диффеоморфизмов F.

**Заключение.** Таким образом, в работе установлены условия на открытое множество  $X \subset \mathbb{R}^2$ , при которых гомеоморфизм  $F: X \to \mathbb{R}^2$ , сохраняющий меру любого замкнутого единичного квадрата и замкнутого единичного полукруга из X, будет сохранять меру любого измеримого по Лебегу подмножества X. Также показано, что установленные условия существенно ослабить нельзя.

**Информация о финансовой поддержке:** Исследование проводилось в рамках государственного задания Министерства науки и высшего образования Российской Федерации (тема № 1023020800027-5-1.1.1 и тема № 124012400352-6).

### Список литературы

- 1. Volchkov, V. V. Integral Geometry and Convolution Equations / V. V. Volchkov. Dordrecht: Kluwer Academic Publishers, 2003. 454 p.
- 2. Люмис, Л. Введение в абстрактный гармонический анализ / Л. Люмис. Москва: Издательство иностранной литературы, 1956. С. 186—194.
- 3. Volchkov, V. V. Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg Group / V. V. Volchkov, Vit. V. Volchkov. London: Springer. 2009. 671 p.
- 4. Volchkov, V. V. Offbeat Integral Geometry on Symmetric Spaces / V. V. Volchkov, Vit. V. Volchkov. New York: Birkhauser, Basel. 2013. 592 p.
- 5. Очаковская, О. А. Теоремы о двух радиусах для гомеоморфизмов, сохраняющих меру / О. А. Очаковская // ДАН. 2006. Т. 408, №4. С. 1–3.
- 6. Волчков, В. В. Аппроксимация функций в Lp линейными комбинациями индикаторов / В. В. Волчков, И. С. Пилипенко // Вестник Донецкого национального университета. Сер. А: Естественные науки. − 2024. − № 2. − С. 3–8.

УДК 517.588

### ОСЛАБЛЕНИЕ ИНТЕГРАЛЬНОГО УСЛОВИЯ В ТЕОРЕМЕ О ПОЛНОМ ДИФФЕРЕНЦИАЛЕ

**Волчков В.В.,** д-р физ.-мат. наук, проф., ORCID 0000-0003-4274-0034, **Сероштанова К.В.,** ORCID 0009-0000-5926-3671

ФГБОУ ВО «Донецкий государственный университет», г. Донецк, РФ valeriyvolchkov@gmail.com, timofeeva karina00@mail.ru

**Введение.** Пусть в некоторой односвязной области заданы две непрерывно дифференцируемые функции P(x,y) и Q(x,y). При изучении дифференциальных уравнений вида

$$P(x, y)dx + Q(x, y)dy = 0$$

возникает вопрос о том, когда выражение P(x,y)dx + Q(x,y)dy является полным дифференциалом некоторой функции U(x,y). Он тесно связан с вопросом об условиях независимости криволинейного интеграла от выбора пути интегрирования. Ответы на указанные вопросы можно резюмировать в виде следующей теоремы, рассматриваемой в курсе математического анализа [1].

**Теорема 1.** Пусть функции P и Q непрерывно дифференцируемы в односвязной области  $D \subset \mathbb{R}^2$ . Тогда следующие условия эквивалентны:

- 1)  $\int_{\gamma} P dx + Q dy = 0\;$  для любой замкнутой кусочно-гладкой кривой  $\gamma \subset D$  .
- 2) для любых точек  $A,B\in D$  интеграл  $\int_{\gamma_{AB}}Pdx+Qdy$  не зависит от кусочно-гладкой кривой  $\gamma_{AB}\subset D$  , соединяющей точки A и B ;
- 3) выражение Pdx + Qdy является полным дифференциалом некоторой дифференцируемой в области D функции U;
  - 4) в области D выполнено условие  $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$ .

В доказательстве теоремы 1 используют широкий произвол в выборе контуров  $\gamma$ . Вместе с тем в ряде случаев это требование на  $\gamma$  можно значительно ослабить.

**Основная часть.** В работе [2] было доказано следующее утверждение. *Теорема 2.* Пусть функции P и Q непрерывно дифференцируемы в односвязной области  $D \subset \mathbb{R}^2$ , являющейся объединением открытых кругов, радиус каждого из которых больше  $\sqrt{5}/2$ . Тогда следующие условия эквивалентны:

- 1)  $\int_{\partial K} P dx + Q dy = 0$  для любого единичного квадрата  $K \subset D$ ;
- 2) выражение Pdx + Qdy является полным дифференциалом некоторой дифференцируемой в области D функции U .

Особенность этого результата состоит в том, что контуры, по которым ведется интегрирование, конгруэнтны границе единичного квадрата. Отметим также, что при подходящем размере области *D* вместо квадратов в теореме 2 можно брать и различные другие множества. Указанные явления тесно связаны с некоторыми экстремальными задачами о множествах Помпейю (см. [3]).

В данной работе мы рассмотрим случай, когда функции принадлежат классу квазианалитических функций и интегрирование ведется не по всем контурам, а по границам квадрата фиксированного размера.

Сформулируем основной результат. Пусть G — открытое множество в комплексной плоскости  $\mathbb C$ . Для последовательности  $\mu=\{M_q\}_{q=0}^\infty$  положительных чисел обозначим через  $C^\mu(G)$  множество функций  $f\in C^\infty(G)$ , таких что для любого компакта  $E\subset G$  существует постоянная  $c_E>0$ , зависящая от E и f, такая что

$$\max_{z \in E} |(\partial^{\alpha} f)(z)| \le c_E^{|\alpha|+1} M_{|\alpha|}$$

для всех операторов частного дифференцирования  $\partial^{\alpha}$  порядка  $\alpha=(\alpha_1,\alpha_2)$ , где  $|\alpha|=\alpha_1+\alpha_2\geq 0$ . Далее предполагается, что последовательность  $\mu=\{M_q\}_{q=0}^{\infty}$  удовлетворяет следующим условиям

$$M_q^{1/q} \le M_{q+1}^{1/(q+1)} \le CM_q^{1/q}, \quad q = 1, 2, \dots$$

для некоторой постоянной C > 0, не зависящей от q.

**Теорема 3.** Пусть функции  $P,Q \in C^{\mu}(G)$ , где  $G \in \mathbb{R}^2$  – односвязная область, которая является объединением открытых кругов с радиусами, большими чем  $\frac{d\sqrt{2}}{2}$ , d>0 – фиксированное. Пусть также выполнено условие

$$\sum_{j=1}^{\infty} \frac{1}{\inf_{q \ge j} M_q^{1/q}} = +\infty. \tag{1}$$

Тогда следующие условия эквивалентны:

- 1)  $\int_{\partial K} P dx + Q dy = 0$  для любого замкнутого квадрата  $K \subset G$  со стороной длины d ;
- 2) выражение Pdx + Qdy является полным дифференциалом некоторой дифференцируемой в области D функции U .

Согласно известной теореме Данжуа-Карлемана условие (1) означает, что f принадлежит квазианалитическому классу функций. Отметим также, что утверждение теоремы 3 станет неверным, если условие (1) не выполняется.

Условие для множества G в теореме 3, связанное с величиной  $\frac{d\sqrt{2}}{2}$ , также убрать нельзя (в противном случае множество G может не содержать ни одного замкнутого квадрата со стороной длины d).

Другие уточнения теоремы о полном дифференциале и вопросы, связанные с интегральными условиями голоморфности см. в работах [3–5]. Данные результаты могут быть полезны при дальнейших исследованиях, связанных с проблемами типа Помпейю на ограниченных областях.

**Заключение.** В работе получено условие, при котором выражение P(x,y)dx + Q(x,y)dy является полным дифференциалом. Это условие связано с равенством нулю криволинейных интегралов по границам квадратов, конгруэнтных данному.

**Информация о финансовой поддержке:** Исследование проводилось в рамках государственного задания Министерства науки и высшего образования Российской Федерации (тема № 1023020800027-5-1.1.1 и тема № 124012400352-6).

### Список литературы

- 1. Волчков, В. В. О некоторых свойствах функций, характеризуемых нулевыми интегралами / В. В. Волчков, Вит. В. Волчков, Н. П. Волчкова // Матем. обр. -2021.- Вып. 42.- С. 38-48.
- 2. Волчков, В. В. О некоторых свойствах функций, характеризуемых нулевыми интегралами. Окончание / В. В. Волчков, Вит. В. Волчков, Н. П. Волчкова // Матем. обр. 2022. Вып. 1. С.38–47.
- 3. Volchkov, V. V. Integral geometry and convolution equations / V. V. Volchkov // Dordrecht: Kluwer. 2003. P. 454.
- 4. Volchkov, V. V. Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg Group/ V. V. Volchkov, Vit. V. Volchkov // Springer: Verlag London. 2009. P. 671.
- 5. Volchkov, V. V. Offbeat Integral Geometry on Symmetric Spaces / V. V. Volchkov, Vit. V. Volchkov // Birkhauser. 2013. P. 592.

### УДК 517.5

### ТЕОРЕМА О СРЕДНЕМ ДЛЯ СОБСТВЕННЫХ ФУНКЦИЙ ОПЕРАТОРА КОХА НА ГРУППЕ $H^n_{red}$

**Волчкова Н.П.**<sup>1</sup>, канд. физ.-мат. наук, доц., ORCID 0000-0001-6193-2782, **Волчков Вит.В.**<sup>2</sup>, д-р физ.-мат. наук, проф., ORCID 0000-0003-4274-0034, **Скляр Д.В.**<sup>2</sup>

<sup>1</sup>ΦГБОУ ВО «Донецкий национальный технический университет», г. Донецк, РФ <sup>2</sup>ФГБОУ ВО «Донецкий государственный университет», г. Донецк, РФ volna936@gmail.com

**Введение.** Теоремы о среднем для различных классов функций играют важную роль в гармоническом анализе, интегральной геометрии, дифференциальных уравнениях и других областях математики. В данной работе получена новая теорема о среднем для собственных функций оператора Коха на редуцированной группе Гейзенберга. Интерес к этому случаю обусловлен развитием теории периодических в среднем функций на группах (см. [1, 2]).

Основная часть. Далее используются следующие преимущественно стандартные обозначения:  $\mathbb{C}$ ,  $\mathbb{Z}$ ,  $\mathbb{Z}_+$ — соответственно множества комплексных, целых и целых неотрицательных чисел;  $\mathbb{C}^n$  — n-мерное комплексное пространство;  $z\overline{w}$  — эрмитово скалярное произведение векторов  $z,w\in\mathbb{C}^n$ ;  $|z|=\sqrt{z\overline{z}}$  — длина вектора  $z\in\mathbb{C}^n$ ;  $\mathbb{S}^{2n-1}=\{z\in\mathbb{C}^n\colon |z|=1\}$  — единичная сфера в  $\mathbb{C}^n$ ;  $d\eta$  — нормированная мера Хаара на мультипликативной группе  $\mathbb{S}^1$ ;  $\mathcal{U}(n)$  — унитарная группа в  $\mathbb{C}^n$ ; dU — нормированная мера Хаара на  $\mathcal{U}(n)$ ;  $T^n(U)$  — квазирегулярное

представление группы U(n) в пространстве  $L^2(\mathbb{S}^{2n-1})$ :  $T^n(U)f(\xi)=f\Big(U^{-1}\xi\Big), \ f\in L^2(\mathbb{S}^{2n-1})$  ;  $\delta_{k,l}$  — символ Кронекера;  $j_\alpha$  — нормированная функция Бесселя порядка  $\alpha$  ;  ${}_1F_1(a;b;x)$  — вырожденная гипергеометрическая функция Куммера.

Редуцированная группа Гейзенберга  $G = H^n_{red}$  представляет собой декартово произведение  $\mathbb{C}^n \times \mathbb{S}^1$  с законом умножения  $(z,\tau)(w,\eta) = \left(z+w,\tau\eta e^{\frac{i}{2}\operatorname{Im} z\overline{w}}\right)$ . Нетрудно видеть, что коммутант [G,G]

группы G совпадает с её центром  $\{0\} \times \mathbb{S}^1$ , а [G,G],G] — единичная подгруппа в G. Поэтому G является нильпотентной группой Ли ступени 2. Пусть  $\mathcal{D}(G)$  — множество всех бесконечно дифференцируемых финитных функций на G,  $\mathcal{D}'(G)$  — пространство распределений на G,  $\mathscr{E}'(G)$  — распределения на G с компактными носителями,  $\mathscr{E}'_{\#}(G)$  — радиальные (по переменной Z) распределения из  $\mathscr{E}'(G)$ . Значение функционала  $f \in \mathcal{D}'(G)$  на функции  $\varphi \in \mathcal{D}(G)$  будем записывать  $\langle f, \varphi \rangle$ . Пространство C(G) вкладывается в  $\mathcal{D}'(G)$  сопоставлением функции  $f \in C(G)$  распределения

$$\varphi \to \langle f, \varphi \rangle = \int_G f \varphi \, dg, \quad \varphi \in \mathcal{D}(G),$$

где dg — мера Хаара на G.

Определим свёртку  $\mu * \nu$  двух распределений на G, хотя бы одно из которых имеет компактный носитель, как распределение

$$\langle \mu * \nu, \varphi \rangle = \langle \nu(\boldsymbol{g}), \langle \mu(g), \varphi(g\boldsymbol{g}) \rangle \rangle, \quad \varphi \in \mathcal{D}(G).$$

Оператор Коха (лапласиан Гейзенберга) действует по правилу  $\langle L_G f, \varphi \rangle = \langle f, \psi \rangle, \ f \in \mathcal{D}'(G), \ \varphi \in \mathcal{D}(G), \ \text{где}$ 

$$\psi(z,\tau) = -4\sum_{j=1}^{n} \frac{\partial^{2}}{\partial z_{j} \partial \overline{z_{j}}} \varphi(z,\tau) - \sum_{j=1}^{n} \left(\tau \frac{\partial}{\partial \tau}\right) \left(z_{j} \frac{\partial}{\partial z_{j}} - \overline{z_{j}} \frac{\partial}{\partial \overline{z_{j}}}\right) \varphi(z,\tau) + \frac{|z|^{2}}{4} \left(\tau \frac{\partial}{\partial \tau}\right)^{2} \varphi(z,\tau).$$

Имеет место равенство

$$L_G(E_{\lambda,m}^n) = (|m| + \delta_{m,0})\lambda^2 E_{\lambda,m}^n, \quad \lambda \in \mathbb{C}, \quad m \in \mathbb{Z},$$

где 
$$E_{\lambda,m}^{n}(z,\tau) = {}_{1}F_{1}\left(\frac{n-\lambda^{2}}{2};n;\frac{|m||z|^{2}}{2}\right)e^{-\frac{|m||z|^{2}}{4}}\tau^{-m}$$
 при  $m \neq 0$ ,

 $E^n_{\lambda,0}(z, au)=j_{n-1}(\lambda\,|\,z\,|).$  Определим аналог преобразования Фурье распределения  $\mu\in\mathscr{E}_\#^{'}(G)$  формулой:

$$\mathscr{F}_{\mu,m}(\lambda) = \langle \mu, E^n_{\lambda,m} \rangle, \quad \lambda \in \mathbb{C}, \quad m \in \mathbb{Z}.$$

Пусть  $p,q \in \mathbb{Z}_+$ ,  $H^{n,p,q}$  — пространство всех гармонических однородных многочленов на  $\mathbb{C}^n$ , имеющих полную степень p по переменным  $z_1,...,z_n$  и полную степень q по переменным  $z_1,...,z_n$ . Произвольный многочлен  $h \in H^{n,p,q}$  однозначно определяется своими значениями на сфере  $\mathbb{S}^{2n-1}$ :  $h(z) = |z|^{p+q} h(z/|z|)$ . Пространство  $\mathscr{H}^{n,p,q}$ , состоящее из сужений элементов  $H^{n,p,q}$  на  $\mathbb{S}^{2n-1}$ , является инвариантным подпространством представления  $T^n(U)$ . Тем самым задано представление  $T^{n,p,q}(U)$ , где  $T^{n,p,q}(U)$   $h(\xi) = h(U^{-1}\xi)$ ,  $h \in \mathscr{H}^{n,p,q}$ . Определим оператор  $\mathcal{P}_m^{p,q}$ :  $\mathcal{D}'(G) \to \mathcal{D}'(G)$  следующим образом:

 $\langle \mathcal{P}_{m}^{p,q}f, \varphi \rangle = \langle f(z,\tau), d(n,p,q) \int_{\mathcal{U}(n)} \int_{\mathbb{S}^{1}} \varphi(U^{-1}z,\tau\eta) \eta^{m} d\eta \ \chi^{n,p,q}(U) dU \rangle,$   $f \in \mathcal{D}'(G), \ \varphi \in \mathcal{D}(G), \ \text{где } d(n,p,q) \$ — размерность пространства  $H^{n,p,q}, \ \chi^{n,p,q}(U)$  — характер представления  $T^{n,p,q}(U)$ . Можно показать, что  $\mathcal{P}_{m}^{p,q}$  является проектором и любое распределение  $f \in \mathcal{D}'(G)$  разлагается в безусловно сходящийся ряд по распределениям  $\mathcal{P}_{m}^{p,q}f, \ m \in \mathbb{Z}, \ p,q \in \mathbb{Z}_{+}.$ 

Основным результатом работы является следующая теорема.

**Теорема 1.** Пусть  $m \in \mathbb{Z}$ ,  $p, q \in \mathbb{Z}_+$ ,  $f \in \mathcal{P}_m^{p,q}(\mathcal{D}'(G))$ ,  $\mu \in \mathscr{E}'_\#(G)$ . Тогда:

- 1) если  $L_G f = (|m| + \delta_{m,0}) \lambda^2 f$  в  $\mathcal{D}'(G)$  при некотором  $\lambda \in \mathbb{C}$ , то  $f * \mu = \mathscr{F}_{\mu m}(\lambda) f$  в G;
- 2) если  $L_G f = ((|m| + \delta_{m,0})\lambda^2 + 2m(q-p))f$  в  $\mathcal{D}'(G)$  при некотором  $\lambda \in \mathbb{C}$ , то  $\mu * f = \mathscr{F}_{\mu,m}(\lambda)f$  в G.

Отметим, что имеет место локальный аналог теоремы 1 для распределений  $f \in \mathcal{P}_m^{p,q}(\mathcal{D}'(\mathcal{C}_R)), \, \mu \in \mathscr{E}_\#'(\mathcal{C}_R), \, \text{где } \mathcal{C}_R = B_R \times \mathbb{S}^1, \, B_R = \{z \in \mathbb{C}^n \colon |z| < R\}.$ 

**Информация о финансовой поддержке:** Исследования проводились в рамках государственного задания Министерства науки и высшего образования Российской Федерации (номер госрегистрации № 124012400352-6).

- 1. Volchkov, V. V. Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg Group / V. V. Volchkov, Vit. V. Volchkov London: Springer, 2009. 671 p. DOI: 10.1007/978-1-84882-533-8.
- 2. Волчков, В. В. Единственность решений уравнений обобщённой свёртки на гиперболической плоскости и группе PSL(2, ℝ) / В. В. Волчков, Вит. В. Волчков // Изв. РАН. Сер. матем. 2024. Т. 88, № 6. С. 44–81. DOI: 10.4213/im9530.

### ЗАДАЧА ТИПА РАДОНА-ПОМПЕЙЮ НА ЦИЛИНДРЕ

**Волчкова Н.П.**<sup>1</sup>, канд. физ.-мат. наук, доц., ORCID 0000-0001-6193-2782, **Волчков Вит.В.**<sup>2</sup>, д-р физ.-мат. наук, проф., ORCID 0000-0003-4274-0034, **Хиценко М.В.**<sup>2</sup>

 $^{1}$ ФГБОУ ВО «Донецкий национальный технический университет», г. Донецк, РФ  $^{2}$ ФГБОУ ВО «Донецкий государственный университет», г. Донецк, РФ volna936@gmail.com

**Введение.** В работе получено решение задачи об описании класса непрерывных функций с нулевыми интегралами по всем окружностям (кругам) фиксированного радиуса на цилиндре. Вопросы такого типа восходят к И. Радону, Д. Помпейю и играют важную роль в интегральной геометрии и гармоническом анализе (см. [1, Приложение], [2], [3]).

Основная часть. Далее будем использовать следующие обозначения:  $\mathbb{R}$ ,  $\mathbb{C}$ ,  $\mathbb{Z}$  - соответственно множества вещественных, комплексных и целых чисел;  $\mathcal{D}'(-R;R)$  п — пространство распределений на интервале  $(-R;R) \subset \mathbb{R}$ ;  $\Gamma$  — гамма-функция;  $\mathcal{J}_{\alpha}$  — функция Бесселя первого рода порядка  $\alpha$ ;  $j_{\alpha}$  — нормированная функция Бесселя порядка  $\alpha$ , т.е.  $j_{\alpha}(t) = 2^{\alpha}\Gamma(\alpha+1) \mathcal{J}_{\alpha}(t)t^{-\alpha}$ ;  $\mathcal{Z}(w)$  — множество всех нулей ненулевой целой функции w:  $\mathbb{C} \to \mathbb{C}$ ;  $m_{\lambda}(w)$  — кратность нуля  $\lambda$  функции w.

Для r > 0,  $k \in \mathbb{Z}$  положим

$$\varphi_{r,k}(\lambda) = j_0\left(r\sqrt{\lambda^2 + k^2}\right), \quad \psi_{r,k}(\lambda) = j_1\left(r\sqrt{\lambda^2 + k^2}\right), \quad \lambda \in \mathbb{C}.$$

Из свойств нулей бесселевых функций следует, что функция  $\varphi_{r,k}$  имеет бесконечно много нулей  $\lambda$ , любой её нуль является вещественным или чисто мнимым числом, причем на мнимой оси может находиться лишь конечное число нулей функции  $\varphi_{r,k}$ . Кроме того,  $m_{\lambda}(\varphi_{r,k}) = 1$  при  $\lambda \in \mathcal{Z}(\varphi_{r,k}) \setminus \{0\}$  и  $m_0(\varphi_{r,k}) = 2$ , если  $0 \in \mathcal{Z}(\varphi_{r,k})$ . Отметим также, что нули функции  $\psi_{r,k}$  обладают аналогичными свойствами.

Предположим, что  $Z(w) \neq \emptyset$  и задана функция  $A: Z(w) \to X$  (X – топологическое векторное пространство). Условимся писать

$$X$$
 $B = \sum_{\lambda \in \mathcal{Z}(w)} A(\lambda)$ , если  $B = \lim_{N \to \infty} \sum_{\lambda_j \in \mathcal{Z}(w), |\lambda_j| < N} A(\lambda_j)$ ,

где сходимость понимается в пространстве X и  $\lambda_1, \lambda_2, ...$  - точки множества Z(w), занумерованные в порядке неубывания модулей (для точек с равными модулями нумерация выбирается произвольно).

Пусть 
$$0 < R \le +\infty$$
,  $0 < r < \min\{\pi, R\}$ ,  $C_R = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1, z \in (-R; R)\}$ .

Обозначим через  $\mathcal{U}_r(\mathcal{C}_R)$  (соответственно,  $\mathcal{V}_r(\mathcal{C}_R)$ ) множество всех непрерывных функций на цилиндре  $\mathcal{C}_R$ , имеющих нулевые интегралы по всем окружностям (соответственно, по всем замкнутым кругам) радиуса r, лежащим в  $\mathcal{C}_R$ . Сопоставим всякой функции  $f \in \mathcal{C}(\mathcal{C}_R)$  её ряд Фурье

$$f(\cos u, \sin u, v) \sim \sum_{k \in \mathbb{Z}} f_k(v) e^{iku}, \quad v \in (-R; R),$$

где  $f_k(v) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\cos u, \sin u, v) e^{-iku} du.$ 

Основными результатами работы являются следующие описания классов  $\mathcal{U}_r(\mathcal{C}_R)$  и  $\mathcal{V}_r(\mathcal{C}_R)$ .

**Теорема 1.** Пусть  $f \in C(C_R)$ ,  $X = \mathcal{D}'(-R;R)$ . Тогда для того, чтобы  $f \in \mathcal{U}_r(C_R)$ , необходимо и достаточно, чтобы при любом  $k \in \mathbb{Z}$  имело место разложение

$$X$$
 $f_k(v) = \sum_{\lambda \in \mathcal{Z}(\varphi_{r,k})} \gamma_{\lambda,k} e^{i\lambda v}, \quad ec\pi u \quad j_0(rk) \neq 0, \quad u$ 

$$f_k(v) = \alpha_k + \beta_k v + \sum_{\lambda \in \mathcal{Z}(\varphi_{r,k}) \setminus \{0\}} \gamma_{\lambda,k} \, e^{i\lambda v}$$
, если  $j_0(rk) = 0$ ,

где  $\alpha_k$ ,  $\beta_k$ ,  $\gamma_{\lambda,k} \in \mathbb{C}$ .

**Теорема 2.** Пусть  $f \in C(C_R)$ ,  $X = \mathcal{D}'(-R;R)$ . Тогда для того, чтобы  $f \in \mathcal{V}_r(C_R)$ , необходимо и достаточно, чтобы при любом  $k \in \mathbb{Z}$  имело место разложение

$$f_k(v) = \sum_{\lambda \in \mathcal{Z}(\psi_{r,k})} \gamma_{\lambda,k} e^{i\lambda v}, \quad ecлu \quad j_1(rk) \neq 0, \quad u$$

$$f_k(v) = lpha_k + eta_k v + \sum_{\lambda \in \mathcal{Z}(\psi_{r,k}) \setminus \{0\}} \gamma_{\lambda,k} \, e^{i\lambda v}$$
, если  $j_1(rk) = 0$ , где

 $\alpha_k, \beta_k, \gamma_{\lambda,k} \in \mathbb{C}$ .

Доказательства теорем 1 и 2 основаны на теореме 13.14 из [3].

**Информация о финансовой поддержке:** Исследования проводились в рамках государственного задания Министерства науки и высшего образования Российской Федерации (номер госрегистрации 124012400352-6).

- 1. Хелгасон, С. Преобразование Радона / С. Хелгасон. Москва: Мир, 1983. 148 с.
- 2. Volchkov, V. V. Integral Geometry and Convolution Equations / V. V. Volchkov. Dordrecht: Kluwer, 2003. 454 p. DOI: 10.1007/978-94-010-0023-9.
- 3. Volchkov, V. V. Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg Group / V. V. Volchkov, Vit. V. Volchkov. London: Springer, 2009. 671 p. DOI: 10.1007/978-1-84882-533-8.

### РЕКУРРЕНТНАЯ ФОРМУЛА ДЛЯ ПЕРВООБРАЗНЫХ ЯДЕР 1-СИММЕТРИЧНЫХ МНОГОМЕРНЫХ ХАРАКТЕРИСТИЧЕСКИХ ФУНКЦИЙ

Заставный В.П., д-р физ.-мат. наук, доц.

ФГБОУ ВО «Донецкий государственный университет», г. Донецк, РФ zastavn @rambler.ru

В 1983 в работе Cambanis, Keener, Simons [1] доказано, что множество 1-симметричных -мерных характеристических функций совпадает с образом одномерных вероятностных мер интегрального оператора. Ядро этого оператора  $\omega_n$ :  $[0, +\infty) \to R, n \in N$ , определяется следующим образом:

$$\omega_n(0) = 1, \omega_1(t) = \cos t,$$

И

$$\omega_n(t) = \frac{2^{n/2} \Gamma^2 \left(\frac{n}{2}\right)}{\sqrt{\pi} \Gamma\left(\frac{n-1}{2}\right)} \int_1^{+\infty} j_{\frac{n}{2}-1}(tu) u^{-n+1} (u^2 - 1)^{(n-3)/2} du, \ n \ge 2.$$

В частности

$$\omega_2(t) = \frac{2}{\pi} \int_1^{+\infty} j_0(tu) \frac{du}{u\sqrt{u^2 - 1}} = \frac{2}{\pi} \int_t^{+\infty} \frac{\sin u}{u} du,$$

$$\omega_3(t) = \sqrt{\frac{\pi}{2}} \int_1^{+\infty} j_{\frac{\pi}{2}}(tu) u^{-2} \ du = \int_1^{+\infty} \frac{\sin(tu)}{tu^3} \ du$$
$$= \frac{1}{2} \left( \frac{\sin t}{t} + \cos t - t \int_t^{+\infty} \frac{\sin u}{u} \ du \right).$$

Здесь

$$j_{\lambda}(x) \coloneqq \frac{J_{\lambda}(x)}{x^{\lambda}} = \frac{1}{2^{\lambda}} \sum_{k=0}^{\infty} \frac{1}{\Gamma(k+\lambda+1)} \cdot \frac{\left(-\frac{x^2}{4}\right)^k}{k!} , x \in C, \lambda \in C,$$

а  $J_{\lambda}$ - функция Бесселя первого рода (см. [1, § 3.1]).

В [3, Теорема 4.2] с помощью операторов дробного дифференцирования и интегрирования получена формула

$$\omega_{n+1}(t) = \delta_n W_2^{n/2,1/2} I_2^{(n-2)/2,1/2} \omega_n(t), n \ge 2.$$

В следующей теореме получена ещё одна рекуррентная формула для ядер  $\omega_n$ .

**Теорема 1.** Для любых  $n \in N$  справедливы равенства

$$\gamma_n \omega_n(t) = t \, \omega_{n+1}(t) + n \int_t^{+\infty} \omega_{n+1}(u) \, du, \, t \ge 0; \quad \gamma_n = \frac{2\Gamma^2\left(\frac{n+1}{2}\right)}{\Gamma^2\left(\frac{n}{2}\right)},$$

$$\omega_{n+1}(t) = -\gamma_n \ t^{n-1} \int_t^{+\infty} \frac{\omega_n'(u)}{u^n} \ du = n\gamma_n \int_1^{+\infty} \frac{\omega_n(t) - \omega_n(ts)}{t} \frac{ds}{s^{n+1}} \ , t > 0.$$

Кроме того,  $\gamma_n \omega'_n(0) = 1 - n$ .

**Информация о финансовой поддержке:** Исследование проводилось по теме государственного задания №124012400352-6.

### Список литературы

- 1. Cambanis, S. On α-symmetric multivariate distributions / S. Cambanis, R. Keener, G. Simons // J. Multivariate Analysis. 1983. Vol. 13. P. 213–233.
- 2. Ватсон, Г. Н. Теория бесселевых функций / Г. Н. Ватсон. Москва: Издательство иностранной литературы, 1949. 799 с.
- 3. Wolfgang zu Castell. Recurrence relations for radial positive definite functions // J. Math. Anal. Appl. 2002. vol. 271. P. 108–123.

### УДК 517.5

### UNIQUENESS THEOREMS FOR CLASSES OF FUNCTIONS WITH ZERO SPHERICAL MEANS WITH RESPECT TO THE BESSEL CONVOLUTION

*Krasnoschekikh G.V.*, ORCID 0009-0005-2783-4333, *Volchkov Vit.V.*, д-р физ.-мат. наук, проф., ORCID 0000-0003-4273-0034 ФГБОУ ВО «Донецкий государственный университет», г. Донецк, РФ *wolverimred@mail.ru*, *volna936@gmail.com* 

Let  $\alpha \in (-1/2, +\infty)$ ,  $L_{\natural,\alpha}^{1,\text{loc}}(I_R)$  be the space of even functions on  $I_R = (-R, R)$  locally integrable with respect to the measure  $d\mu_{\alpha}(x) = |x|^{2\alpha+1}dx$  and  $f \star^{\alpha} g$  be the Bessel convolution of a function  $f \in L_{\natural,\alpha}^{1,\text{loc}}(I_R)$  and an even distribution g on the real axis with a support on  $I_R$  (see, for example, [1]). For 0 < r < R, we define the classes

$$V_{r,\alpha}(I_R) = \left\{ f \in L^{1,\text{loc}}_{\natural,\alpha}(I_R) : f \star^{\alpha} \chi_r = 0 \text{ on } I_{R-r} \right\},\tag{1}$$

and

$$U_{r,\alpha}(I_R) = \left\{ f \in L_{\natural,\alpha}^{1,\text{loc}}(I_R) : f \star^{\alpha} \delta_r = 0 \text{ on } I_{R-r} \right\}, \tag{2}$$

where  $\chi_r$  is the indicator of segment [-r, r] and  $\delta_r$  is the even part of the Dirac measure with a support at the point r. In this work, we establish new uniqueness theorems for classes (1) and (2), complementing the corresponding results from [1-3].

Let  $\nu > -1$ ,  $\{\lambda_{\nu,j}\}_{j=1}^{\infty}$  be the sequence of all positive zeroes of the Bessel function  $J_{\nu}$ , numbered in ascending order. We put

$$\mathcal{N}_{r,\nu} = \left\{ r^{-1} \lambda_{\nu,j} \right\}_{j=1}^{\infty}.$$

In particular,

$$\mathcal{N}_{r,1/2} = \{\pi r^{-1} j\}_{j=1}^{\infty}.$$

Let  $B_{\nu}$  denote the Bessel differential operator, i.e.

$$B_{\nu} = \frac{d^2}{dz^2} + \frac{2\nu + 1}{z} \frac{d}{dz}.$$

The main result of the work is as follows.

**Theorem 1.** Let  $0 < r < R \le +\infty$ ,  $\mu = \min \mathcal{N}_{r,\alpha+1}$ .

(i) Assume that 
$$f \in (V_{r,\alpha} \cap C^{\infty})(I_R)$$
 and
$$\lim_{m \to \infty} \mu^{-2m} \sup_{x \in I_r} |B_{\alpha}^m f(x)| = 0.$$
(3)

Then f = 0 on  $I_R$ .

(ii) There is a nonzero function  $f \in (V_{r,\alpha} \cap C^{\infty})(I_R)$  such that

$$\mu^{-2m} \sup_{x \in I_r} |B_{\alpha}^m f(x)| \le 1, \qquad m \in \{0, 1, \dots\}.$$
 (4)

**Theorem 2.** Let  $\mu_* = \min \mathcal{N}_{r,\alpha}$ . If a function  $f \in (U_{r,\alpha} \cap C^{\infty})(I_R)$  satisfies condition (3) for  $\mu = \mu_*$ , then f = 0 on  $I_R$ . In addition, there exists a nonzero function  $f \in (U_{r,\alpha} \cap C^{\infty})(I_R)$  such that estimate (4) holds for  $\mu = \mu_*$ .

Note that the first statements of Theorems 1 and 2 would become incorrect if in condition (3) the set  $I_R$  were replaced by  $I_{R-\varepsilon}$ , where  $\varepsilon \in (0,r)$ . Analogues of Theorems 1 and 2 for mean-periodic functions on two-point homogeneous spaces can be found in [4]-[5].

The research was carried out within the framework of the state contract (project no. 124012400352-6).

#### References

- 1. Volchkov, Vit. V. A Refinement of the Two-Radius Theorem on the Bessel-Kingman Hypergroup / Vit. V. Volchkov, G. V. Krasnoschekikh // Mathematical Notes. 2024. Vol. 116, № 2. P. 223–237. DOI 10.1134/S0001434624070174.
- Krasnoschekikh, G. V. A Uniqueness Theorem for Mean-Periodic Functions on the Bessel-Kingman Hypergroup / G. V. Krasnoschekikh, Vit. V. Volchkov // Izvestiya of Saratov University. Mathematics. Mechanics. Informatics. 2025. Vol. 25, № 1. P. 24–33. DOI 10.18500/1816-9791-2025-25-1-24-33. EDN CEYQRP.

- 3. Krasnoschekikh, G. V. Uniqueness and Representation of Solutions to the Generalized Euler-Poisson-Darboux Equation / G. V. Krasnoschekikh, Vit. V. Volchkov // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. − 2025. − № 6. − P. 57–72. − DOI 10.26907/0021-3446-2025-6-57-72.
- 4. Volchkov, V. V. Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg Group / V. V. Volchkov, Vit. V. Volchkov London: Springer, 2009. 671 p. DOI 10.1007/978-1-84882-533-8.
- 5. Volchkov, V. V. Offbeat Integral Geometry on Symmetric Spaces / V. V. Volchkov, Vit. V. Volchkov Basel: Birhkäuser, 2013. 592 p. DOI 10.1007/978-3-0348-0572-8.

УДК 517.9

### О СЛАБОЙ КОЭРЦИТИВНОСТИ СИСТЕМЫ МИНИМАЛЬНЫХ ДИФФЕРЕНЦИАЛЬНЫХ ОПЕРАТОРОВ В ШКАЛЕ ПРОСТРАНСТВ СОБОЛЕВА

**Лиманский Д.В.,** канд. физ.-мат. наук, доц., ORCID 0009-0000-0104-0328 ФГБОУ ВО «Донецкий государственный университет», г. Донецк, РФ *d.limanskiy.dongu@mail.ru* 

Пусть  $\Omega$  — область в  $\mathbb{R}^n$ ,  $l\coloneqq (l_1,...,l_n)\in \mathbb{N}^n$ ,  $p\in [1,\infty]$ . Рассмотрим в  $L^p(\Omega)$  систему дифференциальных операторов  $\left\{P_j(x,D)\right\}_1^N$  вида

$$P_{j}(x,D) = \sum_{|\alpha:l| \le 1} a_{j\alpha}(x) D^{\alpha}, \quad j \in \{1, ..., N\}.$$
 (1)

Здесь  $D_k = -i\frac{\partial}{\partial x^k}, \ D = (D_1, \cdots, D_n), \ \alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{Z}_+^n, \ |\alpha: l| = \frac{\alpha_1}{l_1} + \dots + \frac{\alpha_n}{l_n} \ , \ D^\alpha = D_1^{\alpha_1} \dots D_n^{\alpha_n}.$  Пусть также  $P_j^l(x, \xi) = \sum_{|\alpha: l| = 1} a_{j\alpha}(x) \xi^\alpha$  обозначает -главный символ оператора  $P_i(x, D)$ .

Напомним следующие определения (см. [1,2]).

**Определение 1**. Систему операторов вида (1) называют – *квазиэллиптической*, если  $(P_1^l(x,\xi),...,P_N^l(x,\xi)) \neq 0$  при  $(x,\xi) \in \Omega \times (\mathbb{R}^n \setminus \{0\})$ .

**Определение 2.** Систему операторов вида (1) называют *слабо* коэрцитивной в (анизотропном) пространстве Соболева  $W^l_{0,p}(\Omega)$ , если с некоторыми константами  $C_1, C_2 > 0$ , не зависящими от  $f \in C_0^\infty(\Omega)$ , справедлива оценка

$$\sum_{|\alpha:l|<1} \|D^{\alpha}f\|_{L^{p}(\Omega)} \le C_{1} \sum_{j=1}^{N} \|P_{j}(x,D)f\|_{L^{p}(\Omega)} + C_{2} \|f\|_{L^{p}(\Omega)}. \tag{2}$$

Пусть  $\Omega = \mathbb{R}^n$ ,  $p = \infty$ , N = 1 и n = 2. Известно [2], что если  $l_1$ , не делится на  $l_2$ , наличие оценки (2) эквивалентно квазиэллиптичности оператора. В противном случае существуют неквазиэллиптические, но слабо коэрцитивные в  $W_{0,\infty}^l(\mathbb{R}^2)$  операторы. Мы приводим полное описание указанных операторов с постоянными «старшими» коэффициентами (см. [3]).

**Информация о финансовой поддержке:** Исследования проводились в ФГБОУ ВО «ДонГУ» при финансовой поддержке Азово-Черноморского математического центра (Соглашение от 27.02.2025 № 075-02-2025-1608).

### Список литературы

- 1. Бесов, О. В. Интегральные представления функций и теоремы вложения / О. В. Бесов, В. П. Ильин, С. М. Никольский. М.: Наука, 1996. 480 с.
- 2. Лиманский, Д. В. Об условиях подчиненности для систем минимальных дифференциальных операторов / Д. В. Лиманский, М. М. Маламуд // Современная математика. Фундаментальные направления. 2024. Т. 70. № 1. С. 121—149.
- 3. Лиманский, Д. В. О слабой коэрцитивности системы минимальных дифференциальных операторов в пространствах Соболева / Д. В. Лиманский, М. М. Маламуд // Записки ПОМИ. 2025 (сдано в печать).

УДК 517.5+519.213

### О ПОЛОЖИТЕЛЬНОСТИ ПРЕОБРАЗОВАНИЯ ФУРЬЕ-БЕССЕЛЯ НЕКОТОРЫХ ФУНКЦИЙ

**Манов А.Д.,** канд. физ.-мат. наук, ORCID 0009 0008 9623 5459 ФГБОУ ВО «Донецкий государственный университет», г. Донецк, РФ *manov.ad@ro.ru* 

Пусть  $1 \leq p < \infty$  и  $\alpha \geq -\frac{1}{2}$ . Обозначим символом  $L^p_\alpha(\mathbb{R}_+)$  множество измеримых функций f на  $\mathbb{R}_+\coloneqq [0,+\infty)$ таких, что

$$\|f\|_{p,\alpha}\coloneqq \left(\int_{\mathbb{R}_+} |f(x)|^p d\mu_{\alpha}(x)\right)^{\frac{1}{p}} < \infty$$
, где  $d\mu_{\alpha}(x)\coloneqq \frac{x^{2\alpha+1}dx}{2^{\alpha}\Gamma(\alpha+1)}$ .

Преобразованием Бесселя (Фурье-Бесселя) функции  $f \in L^1_{\alpha}(\mathbb{R}_+)$  называется следующее интегральное преобразование:

$$\mathcal{F}_{\alpha}(f)(y) = \int_{\mathbb{R}_{+}} f(x) j_{\alpha}(xy) d\mu_{\alpha}(x), \quad y \ge 0,$$
 (1)

где  $j_{\alpha}(z)$  — нормированная функция Бесселя:

$$j_{\alpha}(z) = 2^{\alpha} \Gamma(\alpha+1) \frac{J_{\alpha}(z)}{z^{\alpha}} = \Gamma(\alpha+1) \sum_{k=0}^{\infty} \frac{(-1)^k}{k! \Gamma(k+\alpha+1)} \left(\frac{z}{2}\right)^{2k}, z \in \mathbb{C}, \alpha \geq -\frac{1}{2}.$$

Для функции  $j_{\alpha}(z)$  справедливо неравенство  $|j_{\alpha}(x)| \leq j_{\alpha}(0)$ ,  $x \in \mathbb{R}$ . Отсюда, в частности, следует, что преобразование Бесселя корректно определено на классе функций  $L^1_{\alpha}(\mathbb{R}_+)$ .

Пусть  $\alpha > -\frac{1}{2}$ . Сдвиг Бесселя функции  $f \in C(\mathbb{R}_+)$  определяется следующим образом:

$$T^{y}f(x) = c_{\alpha}^{-1} \int_{0}^{\pi} f\left(\sqrt{x^{2} + y^{2} - 2xy\cos\theta}\right) \sin^{2\alpha}\theta d\theta,$$

$$c_{\alpha} = \frac{\Gamma\left(\alpha + \frac{1}{2}\right)\Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\alpha + \frac{1}{2}\right)}, \quad x, y \ge 0.$$
 (2)

Пусть  $\alpha > -\frac{1}{2}$ . Функция  $f \in C(\mathbb{R}_+)$  называется положительно определённой относительно сдвига Бесселя, если ядро  $k(x,y) \coloneqq T^y f(x)$  положительно определено на  $\mathbb{R}_+^2$ , т. е. для любых  $x_1, ..., x_n \in \mathbb{R}_+$  и для любых  $c_1, ..., c_n \in \mathbb{C}$  имеет место неравенство:

$$\sum_{i,j=1}^{\infty} c_i, \overline{c_j} \, k(x_i, x_j) \ge 0. \tag{3}$$

Обозначим символом  $\Phi_{\alpha}(\mathbb{R}_{+})$  множество положительно определённых относительно сдвига Бесселя функций, а символом  $\Phi_{\alpha,b}(\mathbb{R}_{+})$  подмножество ограниченных функций из  $\Phi_{\alpha}(\mathbb{R}_{+})$ .

В 1951 году Б. М. Левитан [1] получил следующее описание класса  $\Phi_{\alpha}(\mathbb{R}_{+})$ .

$$f(x) = \int_{\mathbb{R}_+} j_{\alpha}(x\xi) d\mu_{\alpha}(\xi)$$

Основным результатом работы является следующая теорема.

**Теорема.** Пусть  $\alpha > -\frac{1}{2} u$  функция  $\psi \colon \mathbb{R}_+ \to \mathbb{R} u$  удовлетворяет условиям  $e^{-t\psi(\cdot)} \in L^1_\alpha(\mathbb{R}_+) \cap \Phi_{\alpha,b}(\mathbb{R}_+)$  для всех t > 0 и

$$H_{\psi}(y,z) := \int_{\mathbb{R}_+} e^{-t\psi(\xi)} j_{\alpha}(y\xi) d\mu_{\alpha}(\xi), \qquad y \in \mathbb{R}_+, \ z \in \mathbb{C}_+, \quad (4)$$

где  $\mathbb{C}_+ \coloneqq \{z \in \mathbb{C} : Re z > 0\}$ . Тогда:

- 1)  $H_{\psi}(y,z) \in C(\mathbb{R}_{+} \times \mathbb{C}_{+})$  и для любого  $y \in \mathbb{R}_{+}$  функция  $H_{\psi}(y,z)$  является аналитической по  $z \in \mathbb{C}_{+}$ ;
  - 2) Справедливы равенства:

$$e^{-t\psi(x)} = \int_{\mathbb{R}_+} H_{\psi}(y, t) j_{\alpha}(xy) d\mu_{\alpha}(y), \quad t > 0, \quad x \in \mathbb{R}_+,$$
 (5)

$$H_{\psi}(x,t) = \int_{\mathbb{R}_{+}} T^{x} \left( H_{\psi}(\cdot, t - \lambda) \right) (y) H_{\psi}(y, \lambda) d\mu_{\alpha}(y),$$

$$x \in \mathbb{R}_{+}, t > 0, \lambda \in (0, t).$$
(6)

3)  $H_{\psi}(y,t) > 0$  для всех t > 0 и всех  $y \in \mathbb{R}_+$ .

**Информация о финансовой поддержке:** Исследование проводилось по теме государственного задания (регистрационный номер 124012400352-6).

### Список литературы

1. Левитан, Б. М. Разложение по функциям Бесселя в ряды и интегралы Фурье / Б. М. Левитан // УМН. – 1951. – Т. 6, № 2. – С. 102–143.

### О ФУНКЦИЯХ С НУЛЕВЫМИ ИНТЕГРАЛАМИ ПО МНОЖЕСТВАМ, КОНГРУЭНТНЫМ ДАННОМУ РАВНОБЕДРЕННОМУ ТУПОУГОЛЬНОМУ ТРЕУГОЛЬНИКУ

**Машаров П.А.**, канд. физ.-мат. наук, ORCID 0009-0003-2423-9390, **В**ласенко **И.С.** 

 $\Phi$ ГБОУ ВО «Донецкий государственный университет», г. Донецк, РФ p.masharov.dongu@mail.ru

**Введение и постановка задачи.** Пусть в действительном евклидовом пространстве  $\mathbb{R}^n$  размерности  $n \geq 2$  со стандартной евклидовой нормой  $|\cdot|$  заданы открытое множество D и компактное множество K. Традиционно, через M(n) обозначаем группу движений  $\mathbb{R}^n$ ,  $Mot(K,D) = \{\lambda \in M(n): \lambda K \subset D\}$ . Множеством Помпейю в D называется компактное множество  $K \subset \mathbb{R}^n$ , если всякая локально суммируемая функция  $f:D \to \mathbb{C}$ , удовлетворяющая условиям

$$\int_{\lambda K} f(x) \ dx = 0$$
 для всех  $\lambda \in \text{Mot}(K, D)$ ,

равна нулю почти всюду в D. Совокупность всех множеств Помпейю в D обозначим  $\mathcal{P}(D)$ . Сформулирована румынским математиком Помпейю в прошлом веке классическая проблема Помпейю состоит в описании  $\mathcal{P}(\mathbb{R}^n)$ . Она хорошо изучена (см. обзор [1] с обширной библиографией), но до сих пор не решена. В [2] было получено, что если  $K \in \mathcal{P}(\mathbb{R}^n)$ , то K является множеством Помпейю в шаре  $\mathbb{B}_R = \{x \in \mathbb{R}^n \colon |x| < R\}$  радиуса  $R \geq 2r^*(K)$ , где  $r^*(K) = \inf\{R > 0 \colon \lambda K \subset \mathbb{B}_R, \ \lambda \in M(n)\}$ . В связи с этим, в [2] поставлена

**Проблема 1.** Для данного компакта  $K \subset \mathbb{R}^n$  найти значение

$$\mathcal{R}(K) = \inf\{R > 0 : K \in \mathcal{P}(\mathbb{B}_R)\}.$$

Решение проблемы находит применения различных фундаментальных областях математики: теории аппроксимаций, комплексном анализе, теории отображений, сохраняющих меру. Методы, используемые для решения проблемы 1, применяются для изучения функций с нулевыми интегралами по множествам положительной коразмерности [3], по множествам, конгруэнтным любому из данного набора и содержащимся в некотором шаре [4]. Достаточно полное описание множеств K, для которых найдены точные значения или получены оценки величин  $\mathcal{R}(K)$ , содержится в [1,2,5].

В данной работе проблема 1 решена для равнобедренного треугольника  $T = \triangle MNK$  в  $\mathbb{R}^2$  с боковыми сторонами MK = NK = 1 и углом между ними  $\angle MKN = 2\pi/3$ . Основным результатом работы являются следующее утверждение.

**Теорема 1.** Имеет место равенство 
$$\mathcal{R}(T) = \frac{3\sqrt{2}-\sqrt{6}}{2}$$
.

Для доказательства теоремы 1 были подобраны дифференциальные операторы с необходимыми свойствами, изучены размещения рассматриваемого треугольника внутри круга радиуса  $R \in \left(\frac{\sqrt{3}}{2}; 1\right)$ , найдены минимальные и максимальные расстояния от центра круга до вершин и сторон треугольника, расположенного в данном круге. Решение неравенств с найденными величинами и применение современных методов анализа позволило оценить искомую величину сверху. Для оценки снизу искомого радиуса был построен пример ненулевой радиальной функции с нулевыми интегралами по треугольникам, конгруентным T и лежащим в круге радиуса  $R \in \left(\frac{\sqrt{3}}{2}; \frac{3\sqrt{2}-\sqrt{6}}{2}\right)$ .

**Выводы.** В работе получено явное значение наименьшего радиуса круга, в котором данное множество

$$T = \{(x, y) \in \mathbb{R}^2 : 0 \le 2x \le 1, -x\sqrt{3} \le y \le x\sqrt{3}\}$$

является множеством Помпейю:  $\mathcal{R}(T) = \frac{3\sqrt{2}-\sqrt{6}}{2} \approx 0,897$ . Известная ранее общая оценка сверху давала  $\mathcal{R}(T) \leq \sqrt{3} \approx 1,732$ . Тривиальная оценка снизу  $\mathcal{R}(T) \geq \frac{\sqrt{3}}{2} \approx 0,866$ . Как видим, найденное значение гораздо ближе к нижней границе оценки, чем к верхней.

**Информация о финансовой поддержке:** Исследование проводилось по теме государственного задания № 124012400352-6.

- 1. Волчков, В. В. Элементы нетрадиционной интегральной геометрии / В. В. Волчков; Вит. В. Волчков // Вестник Донецкого национального университета. Сер. А: Естественные науки. 2021. №. 2. С. 9–52.
- 2. Volchkov, V. V. Integral Geometry and Convolution Equations / V.V. Volchkov. Dordrecht: Kluwer Academic Publishers, 2003. 454 p.
- 3. Машаров, П. А. О функциях с нулевыми поверхностными интегралами по равносторонним треугольникам / П. А. Машаров // Вестник Донецкого национального университета. Сер. А: Естественные науки. 2021. №. 2. С. 110–120.
- 4. Машаров, П. А. Экстремальный вариант проблемы Помпейю для семейства из равнобедренного треугольника и квадрата / П. А. Машаров, И. С. Власенко // Вестник Донецкого национального университета. Сер. А: Естественные науки. 2024. №. 2. С. 62–69.
- 5. Volchkov, V. V. Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg Group / V. V. Volchkov, Vit. V. Volchkov. London: Springer, 2009. 671 p.

### О ПОЛОЖИТЕЛЬНОЙ ОПРЕДЕЛЁННОСТИ МАТРИЦ ШЕНБЕРГА

*Оридорога Л.Л.*, канд. физ.-мат. наук, ORCID 0009-0007-3373-1212, Агибалова А.В., канд. физ.-мат. наук, ORCID 0000-0001-8175-7213 ФГБОУ ВО «Донецкий государственный университет», г. Донецк, РФ l.oridoroga.donnu@mail.ru, a.agibalova.dongu@mail.ru

Радиальные положительно определённые функции естественным образом возникают в различных разделах математики. Например, в теории вероятностей и математической статистике они появляются как характеристические функции радиальных распределений и корреляционные функции однородных изотропных случайных полей. В теории аппроксимации функции этого класса возникают в связи с задачами интерполяции.

Кроме того, радиальные положительно определённые функции имеют приложения в спектральной теории операторов (см. [5]), а также в вопросах базисности Рисса системы специальных функций ([4], [5]). Данная результаты тематически связаны со статьёй [5].

Приведём некоторые основные определения.

Определение 1. Непрерывную комплекснозначную функцию  $F \colon \mathbb{R}^n \to \mathbb{C}$  называют положительно определённой, если она непрерывна в нуле и для каждого набора точек  $X_m := \{x_1, x_2, \cdots, x_m\} \subset \mathbb{R}^n$  матрица  $\left(F\left(x_{j}-x_{k}\right)\right)_{i,k=1}^{m}$  неотрицательно определённая.

Определение 2. Непрерывную комплекснозначную функцию  $F: \mathbb{R}^n \to \mathbb{C}$  называют строго положительно определённой, если она непрерывна в нуле и для каждого набора точек  $X_m = \{x_1, x_2, \cdots, x_m\} \subset \mathbb{R}^n$  матрица  $\left(F(x_j - x_k)\right)_{j,k=1}^m$  положительно определённая.

определённые положительно матрицы характеризуются тем, что все их собственные значения положительные, а неотрицательно определённые матрицы – тем, что кроме положительных собственных значений имеются собственные значения, равные нулю.

Определение 3. Непрерывную вещественнозначную  $f:[0,+\infty)\to\mathbb{R}$  называют радиальной положительно определённой на  $\mathbb{R}^n$ , если функция  $f(\|\cdot\|_n)$  положительно определена на  $\mathbb{R}^n$  или, что то же самое, для любого набора из m точек  $X_m = \{x_1, x_2, \cdots, x_m\}$  матрица  $\left(f\left(\left\|x_j - x_k\right\|_n\right)\right)_{j,k=1}^m$ 

$$\left(f\left(\left\|x_{j}-x_{k}\right\|_{n}\right)\right)_{j,k=1}^{m}$$

является положительно определённой. Здесь  $||\cdot||_n$  — евклидова норма в  $\mathbb{R}^n$ .

Указанную выше матрицу называют матрицей Шенберга, порождённой функцией f и множеством  $X_m$ . Далее будем обозначать её  $S_{X_m}(f)$ .

В недавней работе [5, Theorem 3.6] (см. также монографию [6, Theorem 3.1.5]) доказана следующая теорема.

**Теорема 1.** Непрерывная радиальная положительно определённая функция  $f \neq const \ B^n$ ,  $n \geq 2$ , строго положительно определена.

Множество радиальных положительно определённых функций на  $\mathbb{R}^n$  будем обозначать символом  $\Phi_n$ . Следующая хорошо известная теорема Шенберга (см. [1, Теорема 5.4.2], [6, Theorem 3.8.2]) даёт полное описание класса  $\Phi_n$ .

**Теорема 2 (Шенберг).** Пусть  $n \in \mathbb{N}$ . Тогда функция  $f \in \Phi_n$  тогда и только тогда, когда она допускает представление

$$f(t) = \int_0^\infty \Omega_n(st) \ d\sigma(s), \ t \ge 0,$$

где  $\sigma$  – конечная неотрицательная борелевская мера на  $[0,+\infty)$ . Здесь

$$\Omega_n(z) = 2^{\alpha} \Gamma(\alpha + 1) \frac{J_{\alpha}(z)}{z^{\alpha}} = \Gamma(\alpha + 1) \sum_{k=0}^{\infty} \frac{(-1)^k}{k! \Gamma(k+\alpha+1)} \left(\frac{z}{2}\right)^{2k},$$

$$z \in \mathbb{C}, \quad \alpha = \frac{n-2}{2},$$

где  $J_{\alpha}(z)$  — функция Бесселя первого рода порядка  $\alpha$ .

Следующая теорема обобщает результат, полученный нами для правильного симплекса (см. [2]).

**Теорема 3.** Пусть  $n \ge 3$ . Пусть также  $X_{n+2} := \{x_1, x_2, \cdots, x_{n+2}\}$  — множество вершин правильной (n+1)-мерной пирамиды, в основании которой лежит правильный -мерный симплекс  $\{x_1, x_2, \cdots, x_{n+1}\}$  со стороной a, вершина пирамиды находится в точке  $x_{n+2}$ , длина бокового ребра b. Тогда соответствующая  $(n+2) \times (n+2)$  - матрица Шенберга  $S_{X_{n+2}}(\Omega_n)$  этой пирамиды

$$S_{X_{n+2}}(\Omega_n) = \begin{pmatrix} 1 & \Omega_n(a) & \cdots & \Omega_n(a) & \Omega_n(a) & \Omega_n(b) \\ \Omega_n(a) & 1 & \cdots & \Omega_n(a) & \Omega_n(a) & \Omega_n(b) \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ \Omega_n(a) & \Omega_n(a) & \cdots & 1 & \Omega_n(a) & \Omega_n(b) \\ \Omega_n(a) & \Omega_n(a) & \cdots & \Omega_n(a) & 1 & \Omega_n(b) \\ \Omega_n(b) & \Omega_n(b) & \cdots & \Omega_n(b) & \Omega_n(b) & 1 \end{pmatrix}$$

положительно определена.

**Теорема 4.** Пусть  $n \ge 3$ ,  $f \in \Phi_n$ ,  $f \ne const$  и симплекс, образованный множеством  $X_{n+2}$ , удовлетворяет условиям Теоремы 3. Тогда матрица Шенберга

$$S_{X_{n+2}}(f) = \left(f\left(\|x_j - x_k\|_{n+1}\right)\right)_{j,k=1}^{n+2}$$

положительно определена.

Напомним (см. [2]) пример из n+3 точек (n+1)-мерного пространства, в котором матрица Шенберга не является неотрицательно определённой, то есть может иметь отрицательные собственные значения.

Теорема 5. Пусть функция f вблизи нуля имеет вид

$$f(t) = 1 + c_1 t^2 + c_2 t^4 + o(t^4),$$

где

$$c_2 < \frac{n+1}{2n+6} c_1^2.$$

M пусть во множестве  $X_{n+3} = \{x_1, x_2, \cdots, x_{n+3}\} \subset \mathbb{R}^{n+1}$  точки  $x_1, x_2, \ldots, x_{n+2}$ — вершины правильного симплекса со стороной  $\varepsilon$ , а точка  $x_{n+3}$  — центр этого симплекса. Тогда при достаточно малом  $\varepsilon$  матрица Шенберга  $S_{X_{n+3}}(f)$ , порождённая функцией f и множеством  $X_{n+3}$ , имеет один отрицательный квадрат. B частности, такая функция не принадлежит классу  $\Phi_{n+1}$ .

#### Список литературы

- 1. Ахиезер, Н. И. Классическая проблема моментов и некоторые вопросы анализа, связанные с нею / Н. И. Ахиезер. Москва: ФизМатЛит, 1961. 310 с.
- 2. Оридорога, Л. Л. Неотрицательность матриц Шенберга / Л. Л. Оридорога, А. В. Агибалова // Вестник ДонНУ. Серия А: Естественные науки. 2023. № 2. С. 82—87.
- 3. Golinskii, L. Schoenberg Matrices of Radial Positive Definite Functions and Riesz Sequences of Translates in L<sup>2</sup>(ℝ<sup>n</sup>) / L. Golinskii, M. Malamud, L. Oridoroga // Journal of Fourier Analysis and Applications. 2015. V. 21, № 5. P. 915–960.
- 4. Golinskii, L. Radial Positive Definite Functions and Schoenberg Matrices with Negative Eigenvalues / L. Golinskii, M. Malamud, L. Oridoroga // Transactions of the American Mathematical Society. −2018. − V. 370, № 1. − P. 1–25. http://dx.doi.org/10.1090/tran/6876
- 5. Goloshchapova, N. Radial positive definite functions and spectral theory of the Schrödinger operators with point interactions / N. Goloshchapova, M. Malamud, V. Zastavnyi // Math. Nachr. − 2012. − V. 285, № 14–15. − P. 1839–1859.
- 6. Sasvari, Z. Multivariate Characteristic and Correlation Functions / Z. Sasvari. Berlin, Boston: De Gruyter, 2013. 366 p.

## О СУЩЕСТВОВАНИИ СЛАБЫХ ОБОБЩЕННЫХ РЕШЕНИЙ ЗАДАЧИ КОШИ ДЛЯ УРАВНЕНИЙ СОБОЛЕВСКОГО ТИПА

**Павлов А.Л.,** канд. физ.-мат. наук, доц., ORCID 0000-0003-0532-7486 ФГБОУ ВО «Донецкий государственный университет», г. Донецк, РФ alex4909@gmail.com

**Введение.** Рассматривается задача Коши в полупространстве  $\overline{\mathbf{R}}_{\perp}^{n+1}$ :

$$P(D_x, \partial_t)u = \sum_{k=0}^m P_k(D_x)\partial_t^k u = f, \ x \in \mathbf{R}^n, \ t \ge 0,$$
(1)

$$\left. \partial_{t}^{k} u \right|_{t=0} = g_{k}, \ k=0,...,m-1,$$
 (2)

где 
$$D_{x} = (D_{x_{-1}}, ..., D_{x_{-n}}), \quad D_{x_{-k}} = -i \frac{\partial}{\partial x_{-k}}, \quad \partial_{t} = \frac{\partial}{\partial t}, \quad P_{k}(\sigma), \quad k = 0, ..., m-1$$
— многочлены.

Предполагается, что многочлен  $P_m(\sigma)$  имеет вещественные нули, то есть уравнение (1) является уравнением соболевского типа.

Слабым обобщенным решением задачи Коши (1), (2) будем называть обобщенную функцию u в  $\overline{\mathbf{R}}_{\scriptscriptstyle \perp}^{\scriptscriptstyle n+1}$  и удовлетворяющую уравнению

$$P(D_x, \partial_t) u = f + \sum_{j=0}^{m-1} \sum_{k=0}^{m-j-1} P_{j+k+1}(D_x) g_k \otimes \delta_t^{(j)}, \qquad \text{supp } f \in \overline{\mathbf{R}}_+^{n+1}.$$

$$\tag{3}$$

Построение решения уравнения (3) после применения преобразование Фурье-Лапласа сводится к построению решения уравнения

$$P(\sigma,\lambda)\hat{u}(\lambda) = \hat{f}(\lambda) + \sum_{j=0}^{m-1} \sum_{k=0}^{m-j-1} P_{j+k+1}(\sigma)\hat{g}_k \lambda^j, \tag{4}$$

где  $\hat{u}(\lambda), \hat{f}(\lambda)$  — преобразование Фурье-Лапласа обобщённых функций u , f .

Предполагается, что уравнение (1) удовлетворяет условию:

$$(\exists \gamma \in \mathbf{R}) (\operatorname{Re} \lambda(\sigma) \le \gamma, \text{ если } P(\sigma, \lambda(\sigma)) = 0, \ \sigma \in \mathbf{R}^n / N),$$
 (P)

где N — множество общих вещественных нулей многочленов  $P_k(\sigma)$ , k=0,...,m. Если  $N=\varnothing$ , то это условие эквивалентно условию

$$(\exists \gamma \in \mathbf{R}) (P(\sigma, \lambda) \neq 0, \sigma \in \mathbf{R}^n, \operatorname{Re} \lambda > \gamma)$$

$$(P')$$

Существование слабого обобщенного решения характеристической задачи Коши в пространстве обобщенных функций конечной регулярности  $D'_F(\mathbf{R}^{n+1})$  с носителем в  $\overline{\mathbf{R}}_+^{n+1}$  для уравнения (1), правая часть которого принадлежит этому пространству, доказано Л.Хермандером (см. [1], теорема 12.8.1) при выполнении условия более слабого, чем условие (Р). Доказательство этого фундаментального результата существенно связано с особенностями свойств пространства  $D'_F(\mathbf{R}^{n+1})$ , в частности, при решении проблемы деления, и не позволяет отслеживать рост на бесконечности, регулярность решения в зависимости от свойств правой части в уравнении (1) и начальных данных в (2).

**Цель** исследования — нахождение достаточных условий существования слабых обобщенных решений задачи Коши (1), (2) в пространствах, построенных на основе пространства обобщенных функций медленного роста и его подпространств, учитывающих регулярность и поведение на бесконечности начальных данных и правой части уравнения (1).

**Основная часть.** Пространство обобщенных функций медленного роста  $S'=S'(\mathbf{R}^n)$  является пространством линейных непрерывных функционалов над основным пространством  $S(\mathbf{R}^n)$ , состоящим из бесконечно дифференцируемых функций  $\varphi(x)$ , для которых конечны полунормы

$$\|\varphi(x)\|_{l,k} = \sup_{x \in \mathbb{R}^n} \left[ (1+|x|)^l \sum_{|\alpha| \le k} |D_x^{\alpha} \varphi(x)| \right], \ l, \ k = 0,1,2,\dots$$

Рассмотрим подпространства S', зависящие от параметров S и l:

$$H_{l}^{s} = \left\{ f \in S' : \left\| f \right\|_{l}^{s} \equiv \left[ \int \left( 1 + \left| \sigma \right|^{2} \right)^{s} \left| \mathcal{F}_{x} \left( \left( 1 + \left| x \right|^{2} \right)^{1/2} f \right) \right|^{2} d\sigma \right]^{1/2} < + \infty \right\},$$

где  $\mathcal{F}_{x}g$  — преобразование Фурье обобщённой функции  $g \in S'$ .

Через  $\mathcal{H}(G, E')$  обозначим множество голоморфных функций в области  $G \subset \mathbf{C}$  со значениями в пространстве обобщённых функций E':

$$\mathcal{H}(G, E') = \{ f(\lambda) \in E', \lambda \in G; \forall \varphi \in E(f(\lambda), \varphi) \in \mathcal{H}(G) \},$$

где  $\mathcal{H}(G)$  – пространство функций, голоморфных в области G.

Через  $S'_{+}(\mathbf{R}, S'(\mathbf{R}^n))$  обозначим множество, состоящее из обобщённых функций  $f \in S'(\mathbf{R}^{n+1})$ , удовлетворяющих условиям:

- 1) supp  $f \subset \overline{\mathbf{R}}_{+}^{n+1}$ ;
- 2) для любой функции  $\psi \in S(\mathbf{R})$  имеет место включение  $f_{\psi} = (f, (\cdot)\psi) \in S'(\mathbf{R}^n)$ , то есть существуют числа l,  $s \in \mathbf{R}$  такие, что для любой функции  $\varphi \in S(\mathbf{R}^n)$  справедливо неравенство  $||(f_{\psi}, \varphi)|| = ||(f, \varphi \psi)|| \leq c_{ls}(\psi)||\varphi||_s^l$
- 3) последовательность  $f_{\psi_k}$  сходится к  $f_{\psi}$  в слабой топологии пространства  $S'(\mathbf{R}^n)$ , если последовательность функций  $\psi_k(t) \in S(\mathbf{R})$  сходится к  $\psi$  в  $S(\mathbf{R})$ .

Обозначим через  $S'_{[r]}(\mathbf{R}, S'(\mathbf{R}^n))$  множество обобщённых функций  $f \in D'_+(\mathbf{R}, S'(\mathbf{R}^n))$  таких, что  $e^{-rt} f \in S'_+(\mathbf{R}, S'(\mathbf{R}^n))$ . Если в определении  $S'_{[r]}(\mathbf{R}, S'(\mathbf{R}^n))$  заменить  $S'(\mathbf{R}^n)$  на его подпространство  $H^t_s(\mathbf{R}^n)$ , то получим определение пространства  $S'_+(\mathbf{R}, H^t_s(\mathbf{R}^n))$ 

Для построения слабого обобщенного решения задачи Коши (1), (2) воспользуемся преобразованием Фурье-Лапласа. Задача (1), (2) при этом преобразовании переходит в задачу нахождения решения уравнения (4) в классе функций, голоморфных в полуплоскости  $\Pi_{r}$  со значениями в пространстве  $S'(\mathbf{R}^n)$  и являющихся преобразованиями Фурье-Лапласа обобщенных функций из пространства  $S'_{[r]}(\mathbf{R}, S'(\mathbf{R}^n))$ .

Рассмотрим уравнение

$$P(\sigma,\lambda)\nu(\lambda) = g(\lambda). \tag{5}$$

В работе [2] доказано следующее утверждение.

**Теорема 1.** Если выполнены условия (P) и  $N = \{\sigma_1, ..., \sigma_p\}$ , то для любой обобщённой функции  $g(\lambda) \in \mathcal{H}(\Pi_{\gamma}, H_s^l)$  можно построить обобщённую функцию  $v(\lambda)$ , принадлежащую пространству  $\mathcal{H}(\Pi_{\gamma_0}, H_{\widetilde{s}}^{\widetilde{l}})$  где  $\gamma_0 \geq \gamma$ ,  $\widetilde{l}$ ,  $\widetilde{s}$  - некоторые числа, зависящие от многочлена  $P(\sigma, \lambda)$ , чисел l и s, которая удовлетворяет уравнению (5) и справедливо неравенство

$$\|\nu(\lambda)\|_{\widetilde{s}}^{\widetilde{l}} \leq c(1+|\lambda|)^{\nu}\|g(\lambda)\|_{s}^{l}, \quad \lambda \in \Pi_{\gamma_{0}},$$

c > 0, V - некоторые числа, зависящие от s u l.

Теорема 1 обеспечивает существование слабого обобщенного решения задачи Коши (1), (2).

**Теорема 2.** Если выполнены условия (P) и  $N = \{\sigma_1, ..., \sigma_p\}$ , то для любых начальных данных  $g_i \in H_l^s$ , i=0,...,m-1 и любой обобщённой функции  $f \in S'_{[r]}(\mathbf{R}, H_l^{s'})$  существует слабое обобщённое решение задачи Коши (1), (2), принадлежащее пространству  $S'_{[\widetilde{r}]}(\mathbf{R}, H_{\widetilde{l}}^{\widetilde{s}})$ , где  $\widetilde{\gamma} > \gamma$ ,  $\widetilde{s}$ ,  $\widetilde{l}$  - некоторые числа, зависящие от s, l, s', l'.

Из условия теоремы и теоремы 1 следует, что существует семейство обобщенных функций  $\upsilon(\lambda) \in \mathcal{H}\left(\Pi_{\gamma_0}, H_{\widetilde{s}}^{\widetilde{l}}\right)$ , удовлетворяющее уравнению 4. Применение теоремы обращения для преобразования Лапласа позволяет обосновать существование слабого обобщенного решения задачи (1), (2).

Для уравнения (1), удовлетворяющего условию (Р') , построение решение уравнения (4) сводится к умножению обобщённой функции  $g(\lambda)$ , голоморфно зависящей от  $\lambda \in \Pi_x$ , на функцию  $P^{-1}(\sigma, \lambda)$ .

**Теорема 3.** Если уравнение (1) удовлетворяет условию (Р'), то для любых начальных данных  $g_i \in H_i^s$ , i=0,...,m-1 и любой обобщённой функции  $f \in S'_{[\gamma]}(\mathbf{R}, H_i^{s'})$  существует единственное слабое обобщенное решение задачи Коши (1), (2), принадлежащее пространству  $S'_{[\widetilde{\gamma}]}(\mathbf{R}, H_{\widetilde{I}}^{\widetilde{s}})$ , где  $\gamma' > \gamma$ ,  $\widetilde{I} = \min\{l, l'\}$   $\widetilde{s} = \min\{s', s - \deg_{\sigma} P(\sigma, \lambda)\} - q(\widetilde{I})$ .

**Заключение.** Получены достаточные условия существования слабого обобщенного решения задачи (1), (2) в классах растущих функций.

#### Список литературы

- 1. Хермандер, Л. Анализ линейных дифференциальных операторов с частными производными. В 4 т. Т. 2. Дифференциальные операторы с постоянными коэффициентами / Л. Хермандер М.: Мир, 1986.
- 2. Павлов, А. Л. О делении обобщенной функции медленного роста, голоморфно зависящей от параметра, на многочлен / А. Л. Павлов // Сиб. матем. журн. 2015. Т. 56, № 1. С. 1130–1141. DOI: 10.17377/smzh.2015.56.512

# Информационно-документационное обеспечение управления

УДК 681.5:334.72:664

# ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УПРАВЛЕНИЯ ИННОВАЦИОННОСТЬЮ ПРЕДПРИЯТИЙ ПИЩЕВОЙ ПРОМЫШЛЕННОСТИ

Балдынюк А.И., ORCID 0009-0009-1146-1252

ФГБОУ ВО «Донецкий государственный университет», г. Донецк, РФ h.baldyniuk.dongu@mail.ru

Введение. В условиях стремительного технологического прогресса инновационность становится ключевым драйвером развития предприятий, в том числе и пищевой промышленности, где конкурентоспособность безопасности, устойчивости, OT качества, экологичности зависит производства. Создание новых продуктов и услуг, оптимизация цепочек поставок и внедрение экологичных технологий становится невозможным без эффективного информационного обеспечения деятельности, а именно систематического сбора, анализа и использования данных, связанных с инновациями. В связи с этим, в пищевой отрасли, которая подвержена а также влиянию потребительских регуляциям, информационное обеспечение играет критическую роль в прогнозировании изменений и принятии решений, что обуславливает актуальность темы подтверждается ростом цифровых позволяющих предприятиям адаптироваться к вызовам современности, таким как пандемии, климатические и новаторские изменения.

**Целью** исследования является осуществление анализа информационного обеспечения управления инновационностью предприятий пищевой промышленности.

**Основная часть.** Информационное обеспечение управления инновационностью представляет собой комплекс процессов, направленных на сбор, обработку, хранение, анализ данных для поддержания, разработки и внедрения инноваций. В пищевой промышленности это включает:

мониторинг рыночных трендов таких как: спрос на органические, низкокалорийные, обогащенные витаминами продукты;

анализ технологических новинок, в том числе биотехнологий для производства альтернативных белков, экологичных упаковок и т.д.;

оценку внутренних ресурсов предприятия.

Данные сведения способствуют прогнозированию результатов инновационных проектов, минимизации рисков по обновлению и

внедрению инноваций, оптимизации ресурсов, повышению экологичности производства.

Без этого управления инновациями становится хаотичным, что особенно опасно в пищевой отрасли. Пищевая промышленность отличается регуляторной нагрузкой, необходимостью обеспечения высокой безопасности (отслеживание аллергенов и патогенов) и ориентацией на потребителя (тренды здорового питания, устойчивого Информационное обеспечение здесь должно интегрировать данные о сырье, распределении. Например, предприятия И информацию о цепочках поставок для предотвращения кризисов, таких как дефицит ингредиентов. Инновационность проявляется в разработке функциональных продуктов (с добавлением пробиотиков) или устойчивых упаковок, где данные о потребительском поведении и экологическом воздействии критически важны.

Специфика отрасли требует контроля реальных временных ресурсов, любая задержка информации может привести к порче продукции, ее уценке на рынке, что способствует уделению особого внимания источникам и информации. Источники информации методам сбора делятся внутренние: корпоративные базы данных о продажах, производственных показателях, инвентаре, отзывах сотрудников и внешние: отраслевые отчеты, научные публикации, аналитика, данные по безопасности продуктов питания. Среди методов сбора следует выделить мониторинг социальных сетей для анализа отзывов и опросов потребителей, особое внимание уделить интеграции ІоТ-устройств на производстве, которые представляют собой сеть подключенных устройств, собирающих и способствующих обмену данными в реальном времени. В пищевой промышленности ІоТустройства используются с целью автоматизации процессов производства и управления, повышения качества и уровня безопасности продукции. Они интегрируют программное обеспечение, датчики, облачные платформы с целью мониторинга и контроля качества сырья и продуктов за счет отслеживания датчиками температуры, влажности водородного показателя в холодильниках, что предотвращает порчу; оптимизации за счет автоматизированных систем, корректирующих процессы, снижающих энергозатраты и повышающих эффективность; повышения безопасности и прослеживаемости: датчики и RFID-метки обеспечивают прослеживаемость продуктов, способствуя соблюдению стандартов.

В деятельности предприятий пищевой промышленности используются такие IoT-устройства как: датчики температуры и влажности устанавливаются в холодильниках и складах, RFID-метки и NFC-метки служат для маркировки упаковок и отслеживания партий; смартоборудование в мясоперерабатывающей отрасли направлено для контроля качества мяса за счет роботов; умные контейнеры и транспорт реализуются

за счет датчиков в грузовиках, осуществляющих мониторинг условий перевозки.

Создание единой информационного пространства возможным за счет интеграции IoT-устройств с ERP/MES-системами. IoTкорпоративными системами учёта и управления соединяются, за счет чего становится возможным автоматизировать формирование отчётов, запчастей, планировку загрузки заказ производственных линий и т.д.

В пищевой отрасли популярны специализированные платформы для отслеживания цепочек поставок blockchain-технологии. Аналитика больших данных помогает предсказывать спрос на инновационные продукты, такие как растительные альтернативы мясу и другие. Однако внедрение этих инструментов требует больших инвестиций и обучение персонала, что повысит инновационный потенциал.

Заключение. Информационное обеспечение является неотъемлемой инновационностью предприятий пищевой частью управления промышленности, обеспечивая основу для стратегических решений и Эффективное адаптации изменениям. использование источников и инструментов позволяет минимизировать риски, ускорять внедрение инновационных технологий и повышать конкурентоспособность. Инвестиции в инновации, внедрение инновационных технологий и систематический анализ данных открывают новые возможности для развития отрасли.

#### Список литературы

- 1. Баранова, Л. С. Взаимодействие продаж и маркетинга на предприятиях пищевой промышленности / Л. С. Баранова // Теоретическая и прикладная экономика. 2020. № 1. С. 10–17.
- 2. Глушак, Е. В. Введение в интернет вещей / Е. В. Глушак, А. В. Куприянов. Самара: Издательство Самарского университета. 2023. 104 с.
- 3. Пономаренко, Н. Ш. Инновационные доминанты формирования и реализации стратегии импортозамещения на предприятиях пищевой промышленности / Н. Ш. Пономаренко, А. И. Балдынюк // Прогрессивная экономика. 2023. № 9. С. 5–30.

#### КЛЮЧЕВЫЕ АСПЕКТЫ УПРАВЛЕНИЯ ФИНАНСАМИ ПРЕДПРИЯТИЙ В УСЛОВИЯХ ЛОГИСТИЗАЦИИ ЭКОНОМИКИ

**Гайдарь Е.В.**, канд. экон. наук, доц., ORCID 0009-0008-3353-8831 ФГБОУ ВО «Донецкий государственный университет», г. Донецк, РФ *e.gaydar.dongu@mail.ru* 

**Введение.** В современных условиях развитие финансов предприятий определяется этапом логистизации экономики, базирующейся на потоковых подходах к управлению предпринимательской деятельностью на основе создания логистических цепей и сопровождается усилением роли микро- и макрологистических систем на национальном и глобальном уровнях.

Отечественные предприятия, столкнувшись с новыми условиями ведения предпринимательской деятельности, характеризующимися интегрированием финансовых отношений в систему экономических связей, сочетанием требований производства и социальной ответственности, вынуждены определять действенные механизмы обеспечения эффективного управления финансами [2, с. 47].

**Цель работы** — исследовать особенности управления финансовыми потоками в логистических системах.

Основная часть. Логистизация экономики, то есть интеграция хозяйственной процессов различные аспекты логистических В становится деятельности, важным фактором, влияющим на конкурентоспособность бизнеса. В предприятия таких условиях необходимостью оптимизации финансовых своих процессов, что предполагает их интеграцию с логистическими операциями. Это позволяет не только сократить затраты, но и повысить общую устойчивость и рентабельность.

Изучение научной литературы показало, что в работах современных исследователей механизмы управления финансами предприятий преимущественно рассматриваются в разрезе двух подходов: статического и динамического. Статический подход предполагает учет объемов финансовых ресурсов, которые оцениваются на конкретную дату и отражаются в хозяйственных средствах (активах) предприятия или в источниках их формирования (собственном капитале и обязательствах). Динамический подход предполагает управление движением финансовых ресурсов, поскольку он является первоочередным источником их эффективного формирования и использования.

Логистические решения играют важную роль в финансовой стратегии предприятий. Современные компании, такие как, например, Ozon, показывают, что автоматизация складских операций может снизить

операционные расходы на 15–20%. Оптимизация маршрутов доставки, как это делает UPS, позволяет сэкономить до \$400 миллионов ежегодно. Инвестиции в цифровые логистические платформы, согласно исследованию Gartner, способны увеличить рентабельность предприятий на 20–30%. Эти подчеркивают значимость внедрения инновационных данные стратегическое логистических технологий планирование, В способствует не только снижению затрат, но и повышению общей эффективности бизнеса. «Оптимизация управления логистическими повысить бизнес-процессами позволяет значительно эффективность деятельности современных предприятий» [3].

Таким образом, комплексный подход к логистике становится ключевым фактором для достижения конкурентных преимуществ.

Логистизация технологических процессов на производстве также играет ключевую роль, позволяя оптимизировать процессы снабжения, технологический процесс и сбыт готовой продукции. Это системное повышение конкурентоспособности предприятия на рынке подтверждается работой Астраханцевой и Лошкарева [1, с. 3]. Такие достижения подчеркивают важность стратегического подхода к интеграции, который позволяет компаниям адаптироваться к изменениям на рынке и укреплять свои позиции.

В работе Пономаренко Н. Ш. [4] обосновывается применение методологического подхода к диагностике эффективности управления финансовыми результатами экономического субъекта. По мнению автора, на основе выявленных проблемных ситуаций возможно установить диагноз об эффективности управления финансовыми результатами и разработать соответствующую стратегию управления ими на перспективный период.

По результатам проведенного анализа нами выделены свойства логистической системы предприятия [2, 3]: 1) сложность (определяет наличие большого количества элементов, многофакторный характер их функций взаимодействия, выполнение ИМИ разных 2) эмерджентность (отражает свойство логистической системы выполнять заданную целевую функцию, реализуемую целом); ею 3) структурированность (предполагает наличие определенной организации логистической системы, состоящей из взаимосвязанных субъектов (элементов) и объектов (логистических потоков) управления, обеспечивающих ее декомпозицию); 4) интегрированность (отражает качества, которые в динамической среде способствуют моделированию интегрированных механизмов, способных обеспечить эффективность функционирования логистической системы в долгосрочной перспективе); 5) уникальность (характеризует рациональность взаимосвязей с внешним средой, возможности установления требований к организации финансовых отношений представителями логистической инфраструктуры, неопределенность и непредсказуемость поведения логистической системы);

6) оптимальность (отображает принятие в пределах логистической системы стойкость); оптимальных решений, позволяющих сохранить 7) адаптивность (выделяет способность изменчивости структуры логистической системы в результате воздействия внешней среды); 8) организованность (определяет потенциальные возможности элементов логистической системы образовывать взаимосвязь и объединяться в единое целое; 9) инновационность (характеризует способность логистической совершенствования путем системы К постоянного использования организационных и технологических инноваций); 10) иерархичность (отражает подчиненность элементов логистической системы более низкого уровня элементам более уровня). Их взаимодействие высокого обеспечивает целенаправленность управления хозяйственной деятельностью на основе поэлементного учета, анализа и контроля финансовых, материальных, информационных потоков с определенным агрегированием результативных показателей.

Для оптимизации финансового управления в условиях логистизации экономики предприятиям следует рассмотреть внедрение инновационных технологий. Использование блокчейн-технологий, как это делает компания Wildberries в своей логистической цепочке, повышает прозрачность и надежность транзакций. Применение аналитических платформ, таких как SAP и Oracle, позволяет создавать точные прогнозы финансовых потоков, что усиливает способность предприятий адаптироваться к изменениям на рынке. Эти подходы помогают не только улучшить управление финансами, но и повысить конкурентоспособность, обеспечивая устойчивое развитие в современных экономических условиях.

Выводы. Таким образом, эффективное управление финансами в условиях логистизации экономики способствует оптимизации затрат и улучшению финансовых показателей. Однако недостаточная интеграция этих процессов приводит к нерациональному распределению ресурсов и увеличению издержек, что отрицательно сказывается конкурентоспособности предприятий. Для достижения устойчивого роста и финансового эффективности управления предприятиям рекомендуется внедрять современные подходы к интеграции финансовых и логистических процессов. Это включает использование инновационных инструментов и технологий, таких как цифровые платформы управления финансами и логистикой, а также разработку и применение методов оценки эффективности, которые позволяют лучше контролировать финансовые потоки и адаптироваться к изменениям рыночной среды.

#### Список литературы

1. Астраханцева, А. С. Логистизация деятельности малых производственных предприятий как перспективное направление их развития / А. С. Астраханцева, К. М. Лошкарев // Научный журнал «Управленческий учет». – 2025. – № 8. – С. 23–24.

- 2. Гайдарь, Е. В. Современные информационные системы и технологии в условиях цифровой трансформации бизнеса / Е. В. Гайдарь // Сб. науч. работ серии «Экономика» ДОНАУИГС. 2022. Вып. 25. С. 47–57.
- 3. Кравец, О. А. Интеграция и оптимизация логистических бизнес-процессов в SAP ERP / О. А. Кравец, С. В. Марков // Информационные технологии в юридических и экономических науках. 2024. Вып. 1. С. 97—106.
- 4. Пономаренко, Н. Ш. Диагностика эффективности управления финансовыми результатами экономических субъектов / Н. Ш. Пономаренко // Современная экономика: проблемы и решения. 2024. № 4(172). С. 104–125.

УДК 004.056.5

#### УПРАВЛЕНИЕ ИНФОРМАЦИОННОЙ БЕЗОПАСНОСТЬЮ ПРИ ЦИФРОВИЗАЦИИ АРХИВОВ

**Гизатулин А.М.,** канд. экон. наук, доц., ORCID 0000-0001-9197-1053 ФГБОУ ВО «Донецкий государственный университет», г. Донецк, РФ *withartie@ya.ru* 

**Введение.** Сегодня в архивах Донецкой Народной Республики сосредоточен колоссальный по объемам и уникальный по содержанию объем документов (более 3 млн. единиц с 1784 года), который является важной составляющей национального информационного пространства Российской Федерации.

Архивы являются важным инструментом формирования исторической памяти РФ, способствующим реализации прав человека на информацию, защите демократии, развитию государства и гражданского общества.

Архивные учреждения Донбасса на фоне роста вызовов и усиления угроз, вызванных внешними и внутренними факторами, активно участвуют в постоянно меняющейся обстановке путем реализации инициатив по защите и предоставлению доступа к документальным свидетельствам прошлого для поддержки развития государства и российского общества, укрепления его идентичности. Однако, в существующих условиях функционирования архивов в любой момент могут быть утрачены ценные документы, поэтому особую важность приобретают научные исследования в области цифровизации архивов и обеспечения информационной безопасности архивов [1].

**Цель** проведенного исследования — показать значимость цифровизации и информационной безопасности архивов в текущих условиях развития ДНР.

**Основная часть**. Научные исследования по решению проблемы сохранения архивных документов [2], которые могут сыграть ключевую роль при необходимости восстановления функционирования объектов критической инфраструктуры, реконструкции разрушенных или

поврежденных в ходе специальной военной операции объектов, возобновлении промышленного производства в случае их потери или порчи, приобрели особую актуальность.

Несмотря на стремительный рост темпов оцифровки документов в последние годы, уровень их оцифрованности остается относительно низким, что делает невозможным всеобъемлющий быстрый поиск и онлайндоступ к большинству документов архивного фонда. Для обеспечения соответствия требованиям цифрового общества IT-инфраструктура в сфере архивного дела нуждается в укреплении и постоянном развитии.

На сегодняшний день существует недостаточно фундаментальных и прикладных научных исследований архивоведения, профессиональных изданий и публикаций, посвященных новейшим подходам, методикам, технологиям и инновациям в сфере архивного дела на территории ДНР. Ещё хуже обстоит ситуация с научными исследованиями задач цифровизации и обеспечения информационной безопасности архивов.

В условиях специальной военной операции важно обеспечение сохранности архивных информационных ресурсов, активизация автоматизации архивных бизнес-процессов, что приведет к развитию современных электронных форм взаимодействия, информационной прозрачности и доступности документов республиканского архивного фонда.

Однако, после оцифровки документов возникает новая проблема, связанная с обеспечением информационной безопасности архивов.

Основные угрозы можно свести к трем направлениям [3]:

- 1. Кибератаки (взлом систем, кража и изменение данных).
- 2. Технические сбои (поломки оборудования, сбои программного обеспечения и ошибки пользователей могут привести к потере данных).
- 3. Неправомерный доступ (несанкционированного доступа к конфиденциальной информации).

Для предотвращения угроз информационной безопасности архивов необходимо разработать внедрить комплексную И информационной безопасности для государственных архивов, установить партнерство с ИТ-компаниями для обеспечения защиты данных, создать практиками платформу ДЛЯ обмена опытом И лучшими государственными учреждениями и частными партнерами.

Заключение. Управление информационной безопасностью и цифровизацией архивов — это сложная, но необходимая задача, которая требует постоянного внимания и ресурсов. Эффективная защита архивов не только сохраняет историческую память, но и защищает интересы граждан и государства.

#### Список литературы

1. Коробенкова, Д. А. Информационная безопасность в эпоху цифровых технологий: вызовы и решения / Д. А. Коробенкова // Вестник науки. – 2025. – №3 (84). – URL:

- https://cyberleninka.ru/article/n/informatsionnaya-bezopasnost-v-epohu-tsifrovyhtehnologiy-vyzovy-i-resheniya (дата обращения: 01.10.2025).
- 2. Мащенко, Н. Е. Технологии искусственного интеллекта при формировании архивной среды: проблемы и перспективы / Н. Е. Мащенко, Е. В. Гайдарь // Историческая информатика. -2025. -№ 1(51). C. 162–173. DOI 10.7256/2585-7797.2025.1.73393. EDN QEIGBR.
- 3. Шахторин, М. С. Анализ угроз информационной безопасности в системах цифрового управления / М. С. Шахторин // Вестник науки. 2025. № 2 (83). URL: https://cyberleninka.ru/article/n/analiz-ugroz-informatsionnoy-bezopasnosti-v-sistemahtsifrovogo-upravleniya (дата обращения: 01.10.2025).
- 4. Пономаренко, Н. Ш. Формирование и развитие цифровой экономики: научнометодологический аспект / Н. Ш. Пономаренко // Вестник Донецкого национального университета. Серия В. Экономика и право. 2020. № 4. С. 245–257.

УДК 005.8:004

#### ТРАНСФОРМАЦИЯ СФЕРЫ УПРАВЛЕНИЯ ПРОЕКТАМИ С ПОМОЩЬЮ ЦИФРОВЫХ ТЕХНОЛОГИЙ

**Коробейникова К.В.,** канд. экон. наук, ORCID 0009-0000-7972-114X  $\Phi$ ГБОУ ВО «Донецкий государственный университет», г. Донецк, РФ k.korobeinikova@bk.ru

**Введение.** Благодаря стремительному развитию науки и техники цифровые технологии проникли во все сферы жизни, включая управление инженерными процессами. Традиционные методы управления инженерными процессами часто основаны на ручном труде и эмпирических оценках, что приводит к низкой эффективности, высоким затратам и значительным рискам. Внедрение цифровых технологий открыло новые возможности и проблемы для управления инженерными процессами.

**Цель** исследования состоит в том, чтобы раскрыть особенности современного этапа трансформации процессов управления проектами.

Основная часть. В XXI веке информационные технологии развиваются стремительными темпами, и цифровизация стала ключевым фактором трансформации в различных отраслях. В сложной и многогранной сфере управления проектами эта волна цифровизации принесла беспрецедентные инновации. Будучи ключевым инструментом цифровой трансформации, цифровые технологи постепенно интегрируются во все аспекты управления проектами: от планирования, исполнения, мониторинга до закрытия проекта, комплексно повышая эффективность и качество управления проектами.

Цифровые технологии получают всё более широкое распространение, становясь важным средством повышения эффективности управления, обеспечения оптимизации распределения ресурсов И качества безопасности проектов. Благодаря анализу больших данных интеллектуальным алгоритмам цифровые технологии позволяют точно прогнозировать человеческие, материальные и финансовые ресурсы, необходимые для проекта, обеспечивая рациональное распределение и использование ресурсов. Это не только снижает стоимость проекта, но и предотвращает непроизводительные затраты и простои. Например, интеллектуальные системы планирования тозволяют рационально составлять графики работ строительных бригад с учетом хода строительства и квалификации персонала, повышая производительность труда. Кроме материальными ресурсами системы управления отслеживать запасы и расход материалов в режиме реального времени, что обеспечивает своевременное восполнение дефицита и обеспечивает бесперебойность строительства.

Ю. Л. Верич и Е. Р. Чижова подчеркивают роль цифровых технологий в управлении и мониторинге национальных и федеральных проектов [1, с. 281].

Цифровые технологии способствуют развитию командной работы и инноваций, что имеет решающее значение в управлении проектами. Они предоставляют множество инструментов для совместной работы и коммуникационных платформ, обеспечивая обмен информацией и взаимодействие между членами команды. Например, благодаря онлайнплатформам для совместной работы проектировщики, строители и менеджеры могут обмениваться мнениями и предложениями в режиме реального времени и совместно решать проблемы. Цифровые технологии также стимулируют инновации и привносят новые идеи и методы в управление проектами, обеспечивая научную основу для принятия управлениеских решений. Этот инновационный образ мышления и модель управления способствуют непрерывному прогрессу и развитию в области управления инженерными проектами.

Интеграция больших данных И технологий искусственного интеллекта обеспечивает более точное и эффективное принятие решений. В процессе управления проектами генерируются большие объёмы данных, включая данные о проектировании, строительстве, эксплуатации и техническом обслуживании. Эти данные содержат большое количество информации, но традиционные методы управления не эффективно её использовать. Технологии больших данных позволяют анализировать и извлекать ценную информацию из этих огромных массивов данных, извлекая ценные данные и обеспечивая информационную поддержку для управления проектами. Более того, искусственный интеллект может использовать алгоритмы машинного обучения для прогнозирования

ключевых показателей проекта, таких как стоимость, продолжительность и качество, на основе обширных исторических данных, предоставляя руководителям основу для принятия решений.

Т.В. Ващенко отмечает, что руководители могут удаленно контролировать и управлять строительной площадкой с помощью платформ анализа данных, оперативно выявляя и устраняя проблемы. Этот интеллектуальный подход к визуальному управлению не только повышает эффективность и точность управления проектами, но и снижает управленческие расходы, а также повышает качество и безопасность проектов [2, с. 177].

Аналитика больших данных позволяет глубоко исследовать потенциальные проблемы и возможности оптимизации в управлении проектами, стимулируя постоянное совершенствование [3, с. 74]. Интеграция с системами ERP и CRM обеспечивает комплексный подход к управлению ресурсами, финансами и взаимодействиями с заказчиками, что повышает согласованность и эффективность бизнес-процессов.

Использование блокчейн-технологий способствует обеспечению прозрачности и безопасности транзакций, автоматическому исполнению контрактов (смарт-контрактов), что особенно важно в проектах с высокой ответственностью и необходимостью строгого учета. DevOps и автоматизация CI/CD применяются в IT-проектах для ускорения разработки, тестирования и развертывания программных решений, а также для обеспечения высокой надежности. Инновационные платформы для совместной работы позволяют коммуникацию, хранение информации и централизовать редактирование документов. Цифровые технологии, создавая информационную платформу и механизмы совместной работы, разрушают эти барьеры и обеспечивают полную интеграцию процессов управления проектами [3, с. 74]. Гибкие методологии и цифровой рабочий процесс позволяют быстро адаптироваться к изменениям, автоматизировать итерации и обеспечивают высокую прозрачность процесса.

Заключение. Применение цифровых технологий в управлении проектами играет важнейшую роль В постоянном повышении эффективности управления проектами, распределения оптимизации ресурсов, а также в повышении качества и безопасности проектов. Преимущества интеграции цифровых технологий в процесс управления проектами состоит в повышении скорости принятия решений, в уменьшение бюрократии и документооборота, в улучшение коммуникации внутри команды и с заказчиками, в повышении качества контроля и оценки выполнения задач, а также в возможности реализации сложных проектов с большим объемом данных и участников.

Интеграция цифровых технологий — это необходимое условие для современного управления проектами, позволяющее повысить конкурентоспособность и обеспечить успех в реализации проектов любой сложности.

#### Список литературы

- 1. Верич, Ю. Л. Роль цифровых технологий в управлении и мониторинге национальных и федеральных проектов / Ю. Л. Верич, Е. Р. Чижова // Тенденции и перспективы развития финансов в условиях цифровизации: Материалы II Международной научнопрактической интернет-конференции, Донецк, 19 февраля 2025 года. Донецк: ФГБОУ ВО «Донецкий национальный университет экономики и торговли имени Михаила Туган-Барановского», 2025. С. 281–284.
- 2. Ващенко, Т. В. Проблемы и возможности оценки эффективности внедрения цифровых технологий в строительные проекты / Т. В. Ващенко // Вестник Российского экономического университета имени Г.В. Плеханова. 2025. Т. 22, № 3(141). С. 177—185. DOI 10.21686/2413-2829-2025-3-177-185. EDN PAWDHP.
- 3. Бедердинова, О. И. Цифровые технологии в жизненном цикле проекта / О. И. Бедердинова, Т. А. Минеева. Москва : Инфра-М, 2025. 179 с.
- Пономаренко, Н. Ш. Концептуальные основы цифровой экономики / Н. Ш. Пономаренко // Информационные системы и технологии в моделировании и управлении: Сборник трудов V Международной научно-практической конференции, Ялта, 20–22 мая 2020 года / Отв. редактор К.А. Маковейчук. – Ялта: Общество с ограниченной ответственностью «Издательство Типография «Ариал», 2020. – С. 348– 352.

УДК 38.2:65.011.56

#### ДОКУМЕНТИРОВАНИЕ В ПРОЦЕССЕ ПРИНЯТИЯ РЕШЕНИЙ: СИСТЕМНЫЙ ПОДХОД

**Мащенко Н.Е.,** канд. экон. наук, доц., ORCID 0000-0003-0126-545X ФГБОУ ВО «Донецкий государственный университет», г. Донецк, РФ *maschenko\_n@inbox.ru* 

**Введение.** В условиях усложнения управленческих процессов и необходимости учитывать множество факторов, процесс принятия решений требует высокой степени системности. Одним из важнейших факторов такой системности является документирование. Оно обеспечивает прозрачность, воспроизводимость и правовую значимость управленческих действий. Как справедливо отмечает Герберт Саймон, «рациональное принятие решений предполагает возможность отслеживания всего хода рассуждений и аргументов, лежащих в его основе» [10, с. 45].

Документирование в управлении не ограничивается фиксацией конечного результата. Оно сопровождает каждый этап процесса принятия решений: от анализа проблемы до контроля выполнения. Как подчеркивают современные исследователи, управленческое действие приобретает легитимность лишь тогда, когда оно закреплено документально [6; 11; 12].

Основная часть. Системный подход рассматривает процесс принятия решений как последовательность взаимосвязанных этапов, которые образуют целостный управленческий цикл. Каждое решение не существует изолированно, а связано с предыдущими и последующими действиями, формируя цепочку, влияющую на устойчивость всей организации.

Согласно классической теории управления, принятие решений можно рассматривать как процесс выбора из альтернатив [2]. Документирование в этом процессе выполняет двойную функцию:

когнитивную, позволяя фиксировать этапы анализа, гипотезы и критерии выбора;

организационную, обеспечивая коммуникацию между участниками и прозрачность действий.

Г. Минцберг указывает: «Формализация управленческих решений через систему документирования снижает уровень неопределённости и координирует взаимодействие подразделений» [8, с. 50]. В отечественных исследованиях также подчёркивается, что документирование создаёт основу для управленческой ответственности [11; 12].

В практике менеджмента документирование проявляется в различных видах документов:

- 1. Протоколы совещаний: отражают ход обсуждения, альтернативы, позиции участников и итоги голосования. Эти документы имеют важное значение для прозрачности и подотчётности, так как позволяют проследить процесс принятия решения. Протоколы фиксируют несколько вопросам, альтернативных решений ПО обсуждаемым аргументы участников и итоговое коллективное решение.
- 2. Аналитические документы (справки, отчёты, аналитические содержат исходные данные, прогнозы обоснования. И Аналитические записки с прогнозом развития ситуации используется для приемлемого действий. наиболее варианта Аналитическая документация служит основой рационализации управленческих решений.
- 3. Организационно-распорядительные документы (приказы, распоряжения, постановления, регламенты) закрепляют принятое решение в форме обязательного акта. Как указывает А. Я. Кибанов, «управленческие решения становятся инструментом управления лишь тогда, когда они зафиксированы в организационно-распорядительной форме» [7, с. 142].
- 4. Планово-программные документы (планы, программы, дорожные карты, проекты решений) обеспечивают последовательное воплощение решений в действиях. Может применяться, например, план-график внедрения новой системы, включающий этапы, сроки и ответственных. Как отмечают Румянцева и Саломатин, «плановые документы превращают разовое управленческое решение в систему мероприятий» [9, с. 97].
- 5. Контрольно-отчётные документы (акты проверки, отчёты об исполнении решений, аудиторские заключения) позволяют оценить

эффективность и качество реализации решения. Например, отчет об исполнении программы, где сопоставляются плановые показатели и фактические результаты.

Для наглядности можно проследить, как различные типы документов соотносятся с этапами управленческого цикла. На каждом этапе принятия решений документирование выполняет определённые функции — от фиксации исходных данных до контроля исполнения (табл. 1).

Наличие соответствующих документов не только фиксирует ход принятия решений, но и обеспечивает их прозрачность, правовую значимость и возможность корректировки действий на всех уровнях управления.

Документы и этапы процесса принятия решений

Таблица 1

| Этап процесса принятия решений | Виды документов                                               | Основные функции                                                                  |
|--------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Анализ проблемы                | Справки, аналитические записки, отчёты, экспертные заключения | Информационная: фиксируют исходные данные, анализ ситуации и прогнозы             |
| Формулировка целей и критериев | Концепции, проекты решений, докладные записки                 | Когнитивная: задают рамки поиска решений, формулируют ключевые параметры          |
| Разработка альтернатив         | Протоколы рабочих встреч, аналитические справки с вариантами  | Коммуникативная: обеспечивают обсуждение и фиксацию возможных сценариев           |
| Выбор оптимального решения     | Протоколы заседаний, заключения комиссий, служебные записки   | Прозрачность и подотчётность: фиксируют позиции участников и итог голосования     |
| Закрепление решения            | Приказы, распоряжения, постановления, регламенты              | Правовая: придают решению обязательную силу для исполнения                        |
| Реализация решения             | Планы, программы, дорожные карты, бюджеты                     | Организационная: превращают решение в систему мероприятий                         |
| Контроль исполнения            | Акты проверок, отчёты об исполнении, аудиторские заключения   | Контрольная: позволяют оценить эффективность реализации и корректировать действия |

По данным Kaplan и Norton [5;6], внедрение документированных процедур способствует формированию единой базы знаний организации и укрепляет её стратегический потенциал. В стратегическом контексте Hamel и Prahalad отмечают, что документирование помогает закрепить «стратегическое намерение» и направляет долгосрочное развитие [4].

Документирование сопровождает каждый этап управленческого цикла — от анализа проблемы до контроля исполнения. Сочетание различных типов документов обеспечивает полноту фиксации, правовую значимость и управленческую преемственность.

Документы образуют логическую последовательность, обеспечивающую прозрачность всего процесса принятия решений. Например, аналитическая справка о выявленной проблеме становится основой для протокола совещания, затем на её основе издаётся приказ о мерах по решению проблемы, разрабатывается план-график реализации, а итог фиксируется в отчёте об исполнении.

Документы в процессе принятия решений не только позволяют в дальнейшем установить причины выбора, но и выступают доказательной базой при возникновении конфликтов, а также становятся архивом «организационных решений» [1], что повышает качество последующих решений.

Российские исследователи подчеркивают, что «без должного документирования управленческие решения теряют устойчивость и могут быть оспорены» [5, с. 92].

Заключение. Таким образом, документирование является неотъемлемой частью процесса принятия решений. Оно обеспечивает воспроизводимость и обоснованность управленческих действий, служит источником организационного обучения и инструментом снижения рисков. Как утверждает Друкер, эффективное управление невозможно без документированного сопровождения решений, так как именно оно превращает «практику управления» в осознанный процесс [3].

#### Список литературы

- 1. Argyris C., Schön D. A. Organizational Learning II: Theory, Method, and Practice. Reading, MA: Addison-Wesley, 1996. 305 p. ISBN 0-201-62983-6.
- 2. Cyert R. M., March J. G. A Behavioral Theory of the Firm. Englewood Cliffs, NJ: Prentice-Hall, 1963. 332 p.
- 3. Drucker P. F. The Practice of Management. New York: Harper & Row, 1954. 404 p.
- 4. Hamel G., Prahalad C. K. Strategic Intent // Harvard Business Review. 1989. Vol. 67, № 3. P. 63–76.
- 5. Kaplan R. S., Norton D. P. The Balanced Scorecard: Measures That Drive Performance // Harvard Business Review. 1992. Vol. 70, № 1. P. 71–79.
- 6. Kaplan, R. S. Conceptual Foundations of the Balanced Scorecard / R. S. Kaplan Harvard Business School Working Paper, No. 10-074. Boston, 2009. 45 p. DOI 10.2139/ssrn.1562586.
- 7. Кибанов, А. Я. Основы менеджмента: учебник / А. Я. Кибанов. М.: Инфра-М, 2016. 320 с.
- 8. Минцберг, Г. Planning on the Left Side and Managing on the Right / Г. Минцберг // Harvard Business Review. 1976. Vol. 54, № 4. P. 49—58.
- 9. Румянцева, Е. Е. Менеджмент организации : учебное пособие / Е. Е. Румянцев, Н. А. Саломатин. М. : Юрайт, 2010. 280 с.

- 10. Саймон, Г. Новая наука управленческих решений = The New Science of Managerial Decision / Г. Саймон. Нью-Йорк : Harper & Brothers, 1960. 200 с.
- 11. Смирнов, Э. А. Документирование управленческой деятельности : монография / Э. А. Смирнов. М. : РАГС, 2008. 214 с.
- 12. Фатхутдинов, Р. А. Стратегический менеджмент : монография / Р. А. Фатхутдинов. СПб. : Питер, 2022.-448 с.

УДК 332.1:005.94

#### СОВРЕМЕННЫЕ АСПЕКТЫ УПРАВЛЕНИЯ ЗНАНИЯМИ В УСЛОВИЯХ ЦИФРОВОЙ ТРАНСФОРМАЦИИ

**Митрохина Е.А.,** канд. экон. наук, ORCID 0000-0001-7321-6521 ФГБОУ ВО «Донецкий государственный университет», г. Донецк, РФ о.mytrokhina@mail.ru

**Введение**. В эпоху цифровой трансформации, когда информация и знания становятся ключевыми факторами конкурентоспособности, эффективное управление знаниями приобретает особую важность. Для Донецкой Народной Республики, региона, переживающего период восстановления и развития, вопросы управления знаниями в условиях внедрения цифровых технологий становятся особенно актуальными.

**Цель** — провести анализ современного состояния управления знаниями в ДНР, выявить проблемы и определить перспективы развития в условиях цифровой трансформации.

**Основная часть**. Цифровая трансформация кардинально меняет подходы к управлению знаниями в организациях и учреждениях.

Управление знаниями (Knowledge Management, УЗ) представляет собой совокупность процессов, направленных на создание, накопление, передачу и использование знаний в организации с целью повышения её эффективности, инновационности и конкурентоспособности. Это системный подход к управлению интеллектуальными активами организации, включая как явные знания (документы, отчеты), так и неявные знания (опыт, компетенции сотрудников) [2].

В ДНР управление знаниями постепенно интегрируется в различные сферы деятельности, хотя и с учетом специфических условий. Основные аспекты, которые характеризуют современное состояние УЗ в ДНР, включают ряд аспектов, среди которых можно выделить следующие:

1. Осознание важности знаний. Растет понимание того, что знания являются ценным активом, который необходимо эффективно использовать для развития экономики, государственного управления и организации.

2. Внедрение информационных технологий. Предпринимаются усилия по внедрению различных ІТ-решений, направленных на сбор, хранение и распространение знаний. Это включает использование баз данных, электронных библиотек, порталов и других инструментов.

Необходимо отметить, что в последние годы растет интерес к применению искусственного интеллекта (ИИ) и машинного обучения (МО) в области управления знаниями [1]. Автоматизация задач, персонализация опыта, улучшенное понимание данных и новые возможности для создания знаний — это некоторые из преимуществ, которые ИИ и МО привносят в УЗ.

- 3. Развитие образовательной инфраструктуры. Система образования в ДНР играет важную роль в создании и распространении знаний. Развиваются различные образовательные программы, направленные на повышение квалификации специалистов и формирование компетенций, необходимых для цифровой экономики.
- 4. Поддержка научных исследований. Предпринимаются меры по поддержке научных исследований, которые способствуют созданию новых знаний и технологий.

Несмотря на осознание важности управления знаниями и предпринимаемые усилия, существует ряд проблем, препятствующих его эффективному развитию в ДНР, среди которых наиболее существенные:

1) ограниченность ресурсов – недостаток финансовых, материальных и кадровых ресурсов является серьезным препятствием для внедрения современных систем управления знаниями.

Недостаток специалистов в области IT и управления знаниями является значимой проблемой для эффективной цифровой трансформации. Без соответствующего обучения и квалифицированных кадров внедрение высокотехнологичных решений встречает трудности. Тем не менее, с каждым годом растет число профессиональных курсов и программ в области цифровых технологий и управления информацией;

- 2) недостаточный уровень цифровой грамотности населения и сотрудников организаций для эффективного использования ІТ-инструментов и участия в процессах управления знаниями;
- 3) отсутствие единой стратегии управления знаниями на уровне региона и отдельных организаций приводит к разрозненности усилий и неэффективному использованию имеющихся ресурсов;
- 4) ограниченный доступ к международным базам данных, научным публикациям и другим источникам информации затрудняет создание новых знаний и обмен опытом с мировым сообществом;
- 5) «утечка мозгов» эмиграция квалифицированных специалистов и ученых за пределы ДНР приводит к потере ценных знаний и опыта;
- 6) инфраструктурные ограничения недостаточно развитая ITинфраструктура, включая низкую скорость интернета и отсутствие

современного оборудования, ограничивает возможности использования цифровых технологий для управления знаниями;

7) сопротивление изменениям. Консервативный подход к работе и нежелание осваивать новые технологии со стороны части сотрудников препятствуют внедрению инновационных методов управления знаниями.

Также одной из проблем является отсутствие специализированных платформ для обмена знаниями. В отличие от более развитых стран, в ДНР отсутствуют масштабные и специализированные платформы для обмена знаниями, такие как корпоративные вики или базы данных. Это приводит к тому, что сотрудники государственных структур и образовательных учреждений часто сталкиваются с проблемой недостаточной информации и отсутствием централизованных ресурсов для поиска знаний.

Вместо специализированных платформ в ДНР широко применяются открытые ресурсы, такие как электронные библиотеки, онлайн-курсы и форумы для обмена знаниями. Эти инструменты помогают людям получать доступ к актуальной информации и повышать свою квалификацию.

Несмотря на существующие проблемы, в ДНР есть значительный потенциал для развития управления знаниями в условиях цифровой трансформации. Ключевыми перспективами являются разработка региональной стратегии управления знаниями и ее реализация, дальнейшее развитие цифровой инфраструктуры, повышение цифровой грамотности для различных категорий населения, создание платформ для обмена знаниями, поддержка научных исследований, создание благоприятной среды для инноваций и привлечение инвестиций, развитие международного сотрудничества.

Реализация перечисленных перспектив позволит генерировать новые знания и технологии, внедрить современные системы УЗ, создать новые рабочие места, повысить цифровую грамотность населения и сотрудников, развить инновации и повысить квалификацию за счет обмена знаниями на онлайн-платформах, укрепить научный потенциал и повысить конкурентоспособность за счет поддержки научных исследований, обмениваться опытом и привлекать передовые технологии посредством международного сотрудничества.

Заключение. Управление знаниями играет важную роль в развитии Донецкой Народной Республики в условиях цифровой трансформации. Преодоление существующих проблем и реализация перспективных направлений позволит создать эффективную систему управления знаниями, которая будет способствовать экономическому росту, повышению качества жизни и укреплению научного потенциала ДНР. Для этого необходимо разработать и реализовать региональную стратегию управления знаниями, развивать ІТ-инфраструктуру, повышать цифровую грамотность населения и создавать благоприятную среду для инноваций.

#### Список литературы

- 1. Митрохина, Е. А. Проблемы и перспективы использования искусственного интеллекта в управлении персоналом организации / Е. А. Митрохина // Управление информацией и документацией в цифровой среде: Сборник статей по материалам II Всероссийской научно-практической конференции, Донецк, 23–24 ноября 2023 года. Донецк: Донецкий государственный университет, 2023. С. 235–239. EDN XKLYJA.
- 2. Руденко, И. В. Эволюция и основные концепции управления знаниями в современных условиях / И. В. Руденко, О. М. Винжегин // Вестник ОмГУ. Серия: Экономика. 2009. №3. С. 111–116. URL: https://cyberleninka.ru/article/n/evolyutsiya-i-osnovnye-kontseptsii-upravleniya-znaniyami-v-sovremennyh-usloviyah (дата обращения: 20.09.2025).

УДК 004.49

# ВЛИЯНИЕ ИНФОРМАЦИОННО-КОММУНИКАЦИОННЫХ ТЕХНОЛОГИЙ НА ПРОЦЕСС ИНФОРМАЦИОННОГО ВЗАИМОДЕЙСТВИЯ ОМСУ И НАСЕЛЕНИЯ. ПРИНЦИП «КЛИЕНТОЦЕНТРИЧНОГО ГОСУДАРСТВА»

**Нестеров О.Ю.,** канд. техн. наук, доц., ORCID 0000-0003-3095-7746 ФГАОУ ВО «Севастопольский государственный университет», г. Севастополь, РФ olegnesterov-1972@mail.ru

**Введение.** В данной работе изучен подход, который позволил перейти от просто информирования граждан о деятельности органов власти к настоящему информационному взаимодействию, которое заключается во взаимовыгодном обмене информацией, который приводит к формированию гражданского общества.

Основная часть. Государство, ориентированное на клиента — это государство, функции и услуги которого организованы так, чтобы быть максимально удобными для граждан, отвечает на их запросы и постоянно улучшает свои процессы на основе анализа пользовательского опыта. В центре внимания «клиентоцентричного государства» оказывается человек, а корпоративная культура строится на таких принципах, как эмпатия, профессионализм и честность. Это создает поддерживающую среду, основанную на новой системе учета жизненных ситуаций граждан.

На процесс информационного взаимодействия значительно влияют информационно-коммуникационные технологии. В послании Федеральному Собранию в 2018 году президент Российской Федерации подчеркнул важность создания прозрачной, удобной и комфортной системы взаимодействия между властью и обществом. Для реализации этой идеи были предложены «дистанционные сервисы» в качестве методологии и

механизма. Также глава государства отметил, что «цифровизация всей структуры государственного управления и повышение её прозрачности — важные меры противодействия коррупции» [1].

В научных трудах описывается, что информационнокоммуникационные технологии (ИКТ) представляют собой комплекс методов, процессов производства и программно-технических средств, объединенных в технологическую цепь, которая обеспечивает сбор, хранение, обработку, вывод и распространение информации с целью снижения трудоемкости процессов использования информационных ресурсов и повышения их надежности и оперативности [2].

Фокусировка этой технологии на населении как на потребителе государственных благ требует увеличения открытости, прозрачности и коммуникативности работы власти. Это предполагает предоставление своевременной, надежной и актуальной отчетности о проделанной работе, статусе, полномочиях, стратегии, финансовой деятельности, операциях и результативности. Перед государством, как перед услугодателем, стоит задача максимально удовлетворить потребности граждан. Это, в свою очередь, требует поиска новых путей внедрения государственных услуг. Такой подход обеспечит переход от простого информирования граждан к информационному взаимодействию, качественному основанному взаимовыгодном обмене данными. В конечном итоге ЭТО будет способствовать развитию гражданского общества. С учетом изменений в мире и интеграции ИКТ в повседневную жизнь, взаимодействие органов власти с населением также претерпело трансформации. Эти нововведения повысили уровень доступа граждан к информации о действиях власти и способствовали открытости. Возможности, предоставляемые информационно-коммуникационными технологиями, улучшили функции государственного управления и сократили временные и трудозатраты как для граждан, так и для органов власти. Тем не менее, остается проблема неэффективного и зачастую нецелевого использования ИКТ в процессе информационного взаимодействия. К тому же возникла угроза превращения инструментов совершенствования форм взаимосвязи рутинные В обязанности для чиновников.

В 2021 году на федеральном и региональном уровнях стартовал Федеральный проект «Государство для людей» [3], который является частью инициатив по социально-экономическому развитию Российской Федерации. Основная цель данного проекта — создание «клиентоцентричного государства», в котором всегда на первом плане находятся граждане и их жизненные потребности, а также обеспечение достойной жизни, спокойствия и уверенности людей в различных жизненных ситуациях. Этот проект призван помогать каждому решать свои задачи и оказывать необходимую поддержку. «Клиентоцентричное государство» — это шаг на пути к более открытой, эффективной и сервисной системе госуправления,

которая сможет ответить на вызовы времени и обеспечить комфортное взаимодействие с гражданами.

Заключение. Основными задачами данного проекта являются:

повышение уровня информативности граждан (разработка и внедрение эффективных решений, которые помогут сделать взаимодействие с госорганами простым и комфортным);

оптимизация и повышение качества государственных услуг (модернизация подходов к предоставлению госуслуг, снижение бюрократических преград и улучшение качества сервиса);

создание открытой и доступной системы (повышение доверия к государству через создание систем обратной связи и постоянное информирование граждан о новых доступных возможностях);

инновационное развитие (внедрение новейших цифровых технологий и решений для повышения качества доступа к госуслугам).

Инструменты для решения поставленных задач:

постоянный мониторинг услуг и создание обратной связи (механизм мониторинга и обратной связи необходим для оценки качества взаимодействия с государственными органами через сбор, агрегацию, анализ и визуализацию данных);

работа с клиентами в связи с их с жизненными ситуациями, создание инструментов, которые представляют собой эффективные методы, позволяющие тонко и точно настроить свои сервисы и услуги под конкретные запросы граждан и бизнеса;

сеть электронных кабинетов и лабораторий пользовательского тестирования для исследования клиентского опыта и поведения пользователя при взаимодействии с государственными услугами и сервисами;

правила, стандарты и нормы (разработка правил, стандартов и культуры внедрения клиентоцентричности позволяет создавать доступные и адаптированные к потребностям граждан сервисы).

#### Список литературы

- 1. Послание Президента Федеральному Собранию. [Электронный ресурс]: официальный сайт Президента России. URL: http://kremlin.ru/events/president/news/62582 (дата обращения: 14.12.2024).
- 2. Томилов, В. В. Информационно- коммуникационные технологии в управлении предприятиями. / В. В. Томилов, В. В. Трофимов, А. М. Бурмистров. СПб.: Изд-во СПбГУЭФ, 2002. 147 с.
- 3. Федеральный проект «Государство для людей». О проекте. [Электронный ресурс]: Официальный сайт Федерального проекта «Государство для людей» URL: https://государстводлялюдей.рф/ (дата обращения: 14.12.2024).

#### ОСОБЕННОСТИ ИНФОРМАЦИОННО-ДОКУМЕНТАЦИОННОГО ОБЕСПЕЧЕНИЯ УПРАВЛЕНИЯ ОРГАНИЗАЦИЕЙ В СОВРЕМЕННЫХ ЦИФРОВЫХ РЕАЛИЯХ

**Овчаренко А.С.,** ORCID 0009-0001-9174-0113

ФГБОУ ВО «Донецкий государственный университет», г. Донецк, РФ antonina.ov4arenko@yandex.ru

**Введение.** В современных цифровых реалиях информационнодокументационное обеспечение организаций становится неотъемлемым элементом эффективного управления и принятия решений.

**Цель** данной статьи заключается в исследовании и анализе особенностей информационно-документационного обеспечения организаций в условиях цифровой трансформации.

**Основная часть.** Актуальность идеи заключается в необходимости интеграции новых информационных технологий и инструментов для оптимизации документооборота, повышения прозрачности процессов и улучшения взаимодействия между сотрудниками и клиентами.

Мы стремимся выявить основные тенденции, проблемы и перспективы, а также предложить рекомендации по внедрению эффективных решений для улучшения документооборота в современных условиях.

Автор Хакимова Х. Х. в своей работе акцентирует внимание на том, что цифровая трансформация является системным подходом, которые включает в себя стратегию, корпоративную культуру и повседневные действия. Она считает, ЧТО в центре цифровой трансформации располагается переход от классического подхода к модели, где на первом находятся данные, автоматизация, прогнозирование плане адаптация [6, с. 357–358].

Работа авторов Гришиной Д. С., Пашутко Д. С., Супрун А. Ю. и Хачикяна Р. А. рассматривает цифровизацию в контексте государственного управления, уделяя внимание ее преимуществам и вызовам. Это дает возможность изучить, как цифровизация влияет на процессы управления, включая аспекты информационного обеспечения. Такой подход позволяет глубже понять трансформацию документооборота и информационных процессов в условиях цифровой эры.

Среди преимуществ цифровизации информационнодокументационного обеспечения следует выделить такие аспекты, как повышение эффективности: автоматизация процессов, улучшение доступа к информации; повышение прозрачности: открытость и доступность данных; онлайн-сервисы; удаленное обслуживание; электронная поддержка; интерактивные сервисы [1, с. 59–60]. Соответственно цифровизация влечёт за собой ряд преимуществ, которые являются неотъемлемой частью эффективной работы информационно-документационного обеспечения управления организации.

Следует отметить, что в сфере мониторинга и контроля цифровые технологии позволяют автоматизировать процессы сбора информации из различных источников. Важным является то, что цифровизация позволяет создавать информационные системы в области информационно-документационного обеспечения, направленные на контроль исполнения сроков, выявление потенциальных проблем, упрощение процессов анализа и мониторинга данных [1, с. 62].

В работе Куправич О. А. изложено, что управление документами является ключевой задачей в условиях цифровизации и глобализации, что соответствует запросу о важности эффективного управления документами в эпоху цифровой трансформации. Автор акцентирует внимание на вызовах и решениях, связанных с цифровыми реалиями, что делает её актуальной для анализа современных особенностей информационно-документационного обеспечения. Данный источник поможет осветить основные аспекты и подходы к управлению документами в современных условиях.

Цифровизация является возможностью для повышения эффективности работы с документами, однако, выделяют ряд трудностей, которые сопряжены с цифровизацией.

Среди барьеров следует отметить недостаточную инфраструктуру, то есть отсутствие в организации технических средств для реализации работы с документами в электронном виде. Барьером является отсутствие четкой стратегии цифровизации, то есть большинство организаций не имеют долгосрочных целей и соответствующих ресурсов при внедрении цифровых решений. Важным барьером является не подготовленность персонала к цифровым изменениям, что влечет за собой переобучение, формирование новых навыков, сопротивление изменениям [3, с. 1].

Следовательно, для эффективной цифровизации организации необходимо разработать стратегический план внедрения, совершенствовать инфраструктуру и подготовить персонал для быстрой адаптации.

В эпоху цифровизации в организациях увеличились объемы документов в электронном виде. Поэтому возникает необходимость в обеспечении безопасности данных, с целью не допустить утраты информации от несанкционированного доступа [3, с. 1].

Следует уделить внимание интеграции различных систем управления документами, которая является значимой для эффективной организации. Следовательно, на пути к интеграции возникает ряд проблем, например, отсутствие единого стандарта обмена данными [2, с. 46], низкая совместимость систем [4, с. 5], сложность интеграции облачных и локальных решений [5, с. 3].

Важной задачей для информационно-документационного обеспечения управления организации является соблюдение нормативных требований, особенно в условиях цифровой трансформации.

Одной из основных проблем является отсутствие унифицированных стандартов, что приводит к несоответствиям в подходах к хранению и обработке данных [2, с. 45].

В ходе изучения литературы установлено, что актуальным является комплексный подход организации в условиях цифровизации, который включает в себя технологические, организационные и культурные изменения. Такой подход позволяет организациям не только соответствовать требованиям времени, но и превращать вызовы в новые возможности [3, с. 5].

Заключение. Таким образом, в ходе исследования был проведен анализ особенностей информационно-документационного обеспечения организаций в условиях цифровой трансформации. Выявлено, что цифровизация информационно-документационного обеспечения имеет ряд преимуществ и недостатков, с которыми сталкиваются организации. Для эффективной работы в условиях цифровизации управленческая система организации должна быть гибкой, чтобы адаптироваться под цифровые методы работы информационно-документационного обеспечения управления.

#### Список литературы

- 1. Гришина, Д. С. Цифровизация государственного управления: преимущества и вызовы / Д. С. Гришина, Д. С. Пашутко, А. Ю. Супрун, Р. А. Хачикян // Интегративные тенденции в медицине и образовании. 2024. С. 58–67.
- 2. Ивановский, Н. И. Аспекты разработки методики управления метаданными документов / Н. И. Ивановский // Вестник ВНИИДАД. 2024. № 3. С. 43–49.
- 3. Куправич, О. А. Современные вызовы и решения в управлении документами: цифровизация, безопасность и интеграция систем / О. А. Куправич // [б. ж.]. [б. г.]. [б. с.].
- 4. Ларин, М. В. Развитие нормативной базы управления документами в России / М. В. Ларин // Научный вестник Крыма. 2022. № 2 (37). С. 1–4.
- 5. Медведева, О. В. Правовые основы облачного хранения электронных документов / О. В. Медведева, Т. С. Панова // Вестник ВНИИДАД. 2023. № 1. С. 1–6.
- 6. Хакимова, X. X. Цифровизация и инновации в управлении: логика трансформации управленческого мышления / X. X. Хакимова // Ilm fan taraqqiyotida raqamli iqtisodiyot va zamonaviy ta'limning o'rni hamda rivojlanish omillari. − 2025. − № 4. − C. 356–359.
- 7. Пономаренко, Н. Ш. Концептуальные основы цифровой экономики / Н. Ш. Пономаренко // Информационные системы и технологии в моделировании и управлении: Сборник трудов V Международной научно-практической конференции, Ялта, 20–22 мая 2020 года / Отв. редактор К.А. Маковейчук. Ялта: Общество с ограниченной ответственностью «Издательство Типография «Ариал», 2020. С. 348—352.

### ЗАЩИТА ИНФОРМАЦИОННЫХ РЕСУРСОВ В ЭПОХУ НОВЫХ ТЕХНОЛОГИЙ: УГРОЗЫ И ЗАЩИТА

**Пономаренко Н.Ш.,** д-р экон. наук, доц., ORCID 0000-0002-8511-5450 ФГБОУ ВО «Донецкий государственный университет», г. Донецк, РФ *n.ponomarenko369@mail.ru* 

Введение. Современная экономика характеризуется быстрым ростом цифровой трансформации практически во всех отраслях: промышленности, финансах, образовании, здравоохранении и государственном управлении. Все больше процессов осуществляется через цифровые технологии, что значительно повышает уязвимость инфраструктуры перед кибератаками и угрозами информационной безопасности. Развитие облачных сервисов, искусственного интеллекта, интернета (IoT), вешей приложений, Big Data создает дополнительные риски информационной безопасности. Новые технологические решения часто разрабатываются быстрее, чем принимаются меры по оценке рисков и внедрению защитных механизмов [3, с. 44]. Следовательно, оценка безопасности должна проводиться регулярно и учитывать современные подходы и методы защиты.

По информационномере роста зависимости бизнеса OT коммуникационных технологий увеличивается число попыток несанкционированного проникновения, конфиденциальной кражи информации, финансовых махинаций и иных видов преступных действий в сфере киберпреступности. Россия находится среди стран-лидеров по киберинцидентов, поэтому необходимость мониторинга и своевременной оценки уровня защищенности становится приоритетной задачей для компаний и органов власти. Это ставит перед бизнесом новые задачи по защите цифровых активов и обеспечению стабильной работы экономических субъектов.

**Цель статьи** – рассмотрение основных аспектов оценки безопасности информационных технологий (ИТ) в условиях цифровизации экономики и ускорения развития новых технологий.

Основная часть. Безопасность информационных технологий (ИТ) является ключевым аспектом современной цифровой среды. Стратегия цифровой трансформации, реализуемая в рамках национальных проектов и формирования общего цифрового пространства Евразийского экономического союза, требует согласованных подходов к обеспечению безопасности информационных ресурсов участников интеграционного объединения. Оценка безопасности ИТ позволит выявить возможные угрозы и разработать комплекс мер по минимизации рисков. Оценка

безопасности ИТ включает в себя комплекс мероприятий, направленных на выявление уязвимостей, рисков и угроз, а также разработку мер защиты информации и инфраструктуры (рис. 1).

Таким образом, оценка безопасности информационных технологий представляет собой многоэтапный процесс, направленный на минимизацию рисков и защиту критически важной информации и ресурсов организации.

Основным понятием безопасности информационных технологий является угроза (Threat), которая может вызвать появление нештатных ситуаций в системе. Также к комплексу понятий необходимо отнести такие, как: нарушитель (Violator), владелец ресурса ( $Proprietor\ of\ resource$ ), уязвимость (Vulnerability), средства защиты ( $Facilities\ of\ defence$ ), риски (Risks).

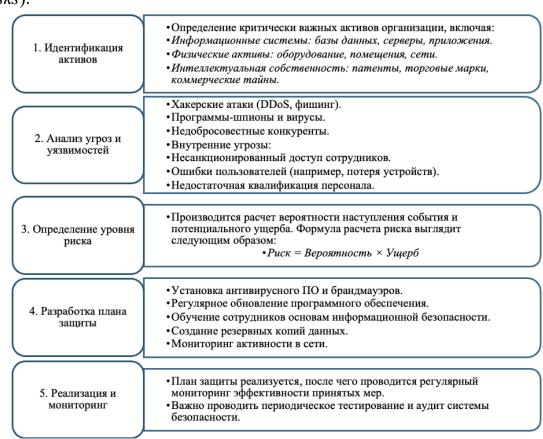



Рис. 1. Основные этапы оценки безопасности информационных технологий (*сформировано автором на основе обобщения* [2, 3])

Используя государственный стандарт «Методы средства обеспечения безопасности критерии оценки безопасности информационных технологий» [2], охарактеризовать специфику ОНЖОМ процессов, происходящих в условиях наличия угроз в среде информационного ресурса. Эту специфику представим в виде графа процессов (обозначим его  $G_n$ ) (рис. 2). Вершинами этого графа являются основные понятия среды, а дугами – отношения между ними. Имена вершин отмечены буквами соответствующих англоязычных названий. Затем граф  $G_n$  описывает процессы. Владелец ресурса (PR) оценивает (1) имеющиеся у него информационные ресурсы (IR) с целью определения их свойств (открытости, конфиденциальности и ценности для организации, учреждения). Нарушитель (V) создает (2) угрозу (T), которая порождает (3) риск (R) потери (4) ресурсом (IR) собственных свойств. В то же время угроза получает (5) выражение в виде атаки (A), которая, используя (6) уязвимости (I) системы, достигает.

Владелец ресурса, зная (10) о наличии риска потери ресурсом своих свойств, создает (11) средства защиты (FD), которые способны уменьшить (12) риски. Но средства защиты также могут иметь свои недостатки, поэтому нарушитель их находит и использует (13) для доступа (14) к ресурсу. В этих обстоятельствах владелец вынужден осуществлять постоянный мониторинг (15) уязвимостей системы с целью их своевременного выявления и тем самым уменьшение (16) рисков. В то же время необходимо принятие мер по оценке (17) состояния средств защиты с целью выявления и устранения недостатков защиты.

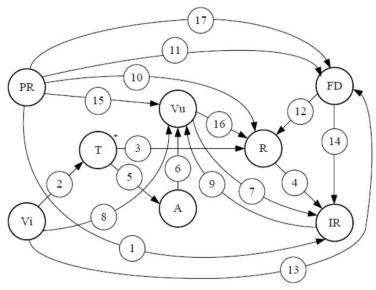



Рис. 2. Граф *Gn* процессов, происходящих в условиях наличия угроз для информационных ресурсов (авторская разработка)

Как показано на рис. 2, на графе *Gn* две вершины — I и R, которые относятся к наиболее нагруженных, что свидетельствует о значительной важности обнаружения уязвимостей в системе и их корреляцией с уровнем рисков потери свойств ресурса. Из этого следует и вывод, что наличие уязвимостей вызывает и появление угроз (были бы уязвимы, а нарушитель всегда найдется). Другими словам, наличие уязвимостей создает окно опасности, которым могут воспользоваться нарушителями для создания нештатной ситуации.

Следует отметить, что персонал играет ключевую роль в обеспечении безопасности информационных технологий, поскольку большинство нарушений и инцидентов происходят именно по вине сотрудников организации. Сотрудники предприятия являются как объектом защиты, так и исполнителем мер по обеспечению информационной безопасности [1, с. 63]. Грамотно организованная работа с персоналом, обучение и профилактика нарушений помогают существенно снизить риски и повысить общий уровень защищенности бизнеса [3, с. 48].

Заключение. Оценка безопасности информационных технологий является критически важным компонентом современной цифровой среды. Быстрое развитие цифровых технологий, таких как облачные сервисы, искусственный интеллект, интернет вещей (IoT), Big Data и мобильные приложения, существенно повышает риски информационной безопасности. Наибольшую опасность представляют уязвимости в системах, которые использовать нарушители МОГУТ ДЛЯ создания угроз. Грамотно организованная работа с персоналом, обучение сотрудников и профилактика ключевую роль в обеспечении играют безопасности нарушений информационных технологий. Для повышения уровня защищенности бизнеса необходимо регулярно проводить оценку безопасности ИТ, внедрять современные защитные механизмы и повышать осведомленность сотрудников о потенциальных угрозах и мерах профилактики.

#### Список литературы

- 1. Ващенко, Н. В. Использование современных цифровых технологий в управлении персоналом предприятий сферы услуг / Н. В. Ващенко, Е. С. Кравченко // Стратегия предприятия в контексте повышения его конкурентоспособности. − 2024. − № 13. − С. 61–65. − EDN ATEYCQ.
- 2. Государственный стандарт РФ «Методы и средства обеспечения безопасности критерии оценки безопасности информационных технологий». Часть 1. Введение и общая модель. URL: gost r iso!mek 15408-1-2002.pdf (дата обращения: 15.09.2025).
- 3. Кравченко, Е. С. Практические аспекты оценки уровня интеллектуального обеспечения бизнес-модели предприятия сферы торговли / Е. С. Кравченко // Актуальные вопросы экономики и управления: теоретические и прикладные аспекты : материалы VIII Международной научно-практической конференции, Горловка, 24 марта 2023 года / Автомобильно-дорожный институт ГОУВПО «ДОННТУ». Том Часть 2. Донецк: Донецкий национальный технический университет, 2023. С. 45–50. EDN XBZUME.

## ИСТОЧНИКОВЕДЕНИЕ: РАСКРЫВАЕМ ТАЙНЫ ПРОШЛОГО ДЛЯ ЛУЧШЕГО БУДУЩЕГО

#### Харакиоз А.В.

ФГБОУ ВО «Донецкий государственный университет», г. Донецк, РФ anna.kharakioz@mail.ru

**Введение.** Источниковедение, кажущееся, на первый взгляд, узкоспециальным направлением, на самом деле имеет огромное значение для понимания настоящего и построения будущего. Погружение в изучение источников позволяет нам не просто узнать «что произошло», но и понять «почему это произошло», кто стоял за событиями и какие цели преследовались. Это, в свою очередь, дает возможность критически оценивать информацию, отличать правду от искажений и принимать более взвешенные решения [1].

Источниковедение учит нас работать с информацией: анализировать, сопоставлять, проверять факты и выявлять предвзятость. Эти навыки бесценны в современном мире, где мы ежедневно сталкиваемся с огромным потоком новостей, мнений и данных. Умение видеть за текстом подоплеку, понимать мотивы автора и оценивать достоверность источника — залог успешной адаптации к быстро меняющимся реалиям.

Знание источниковедения необходимо не только историкам и архивистам. Юристы, журналисты, политологи, экономисты — все, кто имеет дело с информацией и принятием решений, могут значительно повысить свою эффективность, владея инструментами источниковедческого анализа. Понимание контекста, учет различных точек зрения и критический подход к источникам позволяют избежать ошибок и принимать обоснованные решения.

Использование принципов источниковедения выходит далеко за рамки изучения истории. Этот инструментарий полезен в анализе новостей, оценке достоверности информации в интернете, понимании политических процессов и даже в межличностном общении. Умение видеть за словами скрытый смысл, оценивать компетентность источника и выявлять предвзятость — это навыки, которые необходимы каждому современному человеку, стремящемуся к осознанной жизни [2].

работы Цель показать значение источниковедения ДЛЯ современного человека, выявить преимущества использования источниковедческого профессиональной анализа деятельности В повседневной жизни.

**Основная часть.** Источниковедение — это отнюдь не нудное времяпрепровождение в запылённых хранилищах документов и чтение

старинных рукописей. Это увлекательное приключение в минувшие эпохи, дающее возможность осмыслить современность и предугадать грядущее. Это своего рода навигатор, позволяющий не заблудиться в хитросплетениях истории, отделяя вымысел от реальности, а дезинформацию от правды. Источниковедение, как наука об изучении и анализе исторических источников, играет важную роль в развитии критического мышления и помогает нам лучше понимать прошлое, настоящее и будущее. Давайте разберемся, зачем человеку необходимо источниковедение и какие преимущества оно предоставляет.

Во-первых, источниковедение учит нас критически оценивать информацию. Умение отличать достоверные источники от недостоверных, анализировать контекст создания источника и выявлять предвзятость автора – это навыки, необходимые для любого человека, стремящегося к объективному пониманию мира. В эпоху фейковых новостей информационных войн, умение критически оценивать информацию становится особенно важным. Источниковедение дает инструменты для анализа первоисточников, позволяя формировать собственные нам суждения, опираясь на доказательства.

Во-вторых, источниковедение позволяет нам лучше понимать прошлое. Изучение исторических источников открывает перед нами двери в мир прошлого, позволяя нам увидеть жизнь людей, живших до нас, их ценности, убеждения и стремления. Понимание прошлого помогает нам осознать, как формировалось общество, какие факторы повлияли на его развитие и какие уроки мы можем извлечь из истории. Знание истории помогает нам избежать повторения ошибок прошлого и строить более устойчивое и справедливое будущее.

В-третьих, источниковедение способствует развитию аналитического мышления. Анализ исторических источников требует от нас умения выявлять взаимосвязи между различными фактами, делать логические выводы и формулировать аргументированные заключения. Эти навыки полезны не только в исторических исследованиях, но и в повседневной жизни при решении проблем и принятии важных решений. Источниковедение тренирует наш мозг, делая его более гибким и способным к анализу сложной информации.

В-четвертых, источниковедение помогает нам формировать гражданскую идентичность. Изучение истории своей страны и своего народа укрепляет нашу связь с прошлым, формирует чувство принадлежности и ответственности за будущее. Понимание исторических событий, повлиявших на формирование нашей культуры, помогает нам осознать свою роль в обществе и внести свой вклад в его развитие. Источниковедение позволяет нам лучше понять, кто мы есть и откуда мы пришли.

**Заключение.** Источниковедение — это не просто академическая дисциплина, это набор навыков и знаний, необходимых каждому человеку

для успешной жизни в современном мире. Источниковедение помогает нам критически оценивать информацию, понимать прошлое, развивать аналитическое мышление и формировать гражданскую идентичность. Изучение источниковедения открывает перед нами горизонты новых знаний и возможностей, позволяя нам стать более образованными, компетентными и ответственными гражданами. Оно помогает нам раскрывать тайны прошлого не ради праздного любопытства, а для построения лучшего будущего, основанного на знании, понимании и осознанном выборе. Инвестируя в развитие навыков источниковедения, мы инвестируем в свою способность ориентироваться в сложном мире, принимать взвешенные решения и создавать более справедливое и гармоничное общество.

#### Список литературы

- 1. Данилевский, И. Н. Источниковедение : учебное пособие / И. Н. Данилевский, Д. А. Добровольский, Р. Б. Казаков. Москва : Высшая школа экономики, 2015. 685 с. ISBN 978-5-7598-1092-6. Текст : непосредственный.
- 2. Голиков, А. Г. Методика работы с историческими источниками : учебное пособие для студентов высших учебных заведений, обучающихся по направлению подготовки 030600 «История» / А. Г. Голиков, Т. А. Круглова. Москва : Академия, 2014. 224 с. (Высшее профессиональное образование. Бакалавриат). ISBN 978-5-4468-0233-3 (в пер.). Текст : непосредственный.

УДК 378.1

#### МОДЕЛЬ ФУНКЦИОНИРОВАНИЯ ЦЕНТРА ДИСТАНЦИОННОГО ОБРАЗОВАНИЯ В УНИВЕРСИТЕТАХ С ОСОБЫМ СТАТУСОМ

#### Целик М.С.

ФГБОУ ВО «Донецкий государственный университет», г. Донецк, РФ margarita.tzelik@gmail.com

Введение. Высокие темпы цифровизации образования требуют особого подхода в университетах Донбасса [1]. Рассмотрим возможный формат обновленного центра дистанционного образования (ЦДО) на государственного университета. примере Донецкого Цели образовательного расширение возможности процесса посредством дистанционного обучения (ДО); предоставление равного доступа к образовательному процессу, реализация инклюзивного образования; компенсация нарушенной территориальной коммуникации благодаря доступности образовательных программ в онлайн формате; повышение конкурентоспособности университета на рынке образовательных услуг.

Основная часть. Задачи ЦДО: разработка, реализация, внедрение и сопровождение дистанционных образовательных онлайн-курсов, как для внутренних, так и для внешних слушателей; обеспечение технологической и методической поддержки студентов и преподавателей; создание и управление электронной образовательной средой; контроль соответствия требованиям законодательства РФ и образовательным стандартам с учётом качества образования; повышение квалификации педагогов в области ДО.

Для реализации поставленных задач ЦДО выполняет такие функции:

- 1. Методическая: разработка учебно-методических материалов для ДО; консультации для преподавателей по разработке электронных курсов; подготовка стандартов и рекомендаций для реализации ДО; повышение цифровой компетентности профессорско-преподавательского состава.
- 2. Технологическая: администрирование платформы для дистанционного обучения; обеспечение работы сервисов ВКС, вебинаров, мониторинга качества образования; техническая поддержка пользователей.
- 3. Образовательная: организация дистанционного учебного процесса; проведение всех видов учебных занятий и форм контроля в дистанционном формате: лекции, семинары, консультации, зачеты, экзамены, практические и лабораторные занятия (в зависимости от направления подготовки).
- 4. Аналитическая: мониторинг успеваемости студентов; анализ обратной связи от студентов и преподавателей; оценка качества и эффективности образовательного процесса.
- 5. Организационная: взаимодействие с факультетами, кафедрами и другими подразделениями; создание ресурсной базы ДО.

Принципы взаимодействия с факультетами и подразделениями:

- 1. Согласование учебных программ: ЦДО тесно сотрудничает с факультетами для адаптации очных программ к дистанционному формату; согласование форматов контроля и оценивания знаний.
- 2. Техническая поддержка: обеспечение всех сотрудников доступом к образовательной платформе; обучение работе с инструментарием ДО.
- 3. Совместное развитие: внедрение инновационных образовательных технологий; обсуждение и реализация новых форматов обучения.
- 4. Координация процессов: ЦДО организует единое расписание дистанционных занятий и экзаменов, синхронизируя его с очными программами; ведение отчетности по реализации ДО.
- 5. Информационная поддержка: уведомления о новых возможностях, инструментах и результатах внедрения ДО; совместное участие в конференциях, семинарах, круглых столах, вебинарах и прочих проектах.

Приведем примеры взаимодействия между ЦДО и подразделениями.

Факультеты: предоставляют учебные планы и дисциплины для перевода в дистанционный формат; делегируют преподавателей, которые будут разрабатывать или вести курсы (авторы); собирают и направляют

списки онлайн-курсов на будущий учебный семестр; формируют и предоставляют списки студентов для зачисления на онлайн-курсы.

Кафедры: разрабатывают и утверждают содержательную часть курсов; осуществляют контроль качества образовательного процесса; преподаватели-предметники на основе предоставленных материалов и аналитики, принимают итоговые решение по результатам онлайн-обучения.

Центр дистанционного образования: согласовывают список онлайн-курсов для будущего учебного семестра; формируют план производства новых онлайн-курсов (не менее, чем на год); отвечают за обеспечение технической инфраструктуры (серверы, лицензии, техническая поддержка, телестудия); на основе авторского материала преподавателей создают полноценный онлайн-продукт — дистанционные курсы (презентационный материал, продакшн, монтаж, оценочные блоки, опросники); публикуют онлайн-курс на платформе и поддерживают жизненный цикл; организация мониторинга качества образовательного процесса (прокторинг).

Администрация университета: контролирует соответствие образовательных программ государственным стандартам; обеспечивает финансовую и ресурсную поддержку ЦДО.

Ресурсная база центра дистанционного образования (ЦДО) включает в себя как материальные, так и нематериальные ресурсы, необходимые для его эффективной работы. Также потребуется регулярное обновлении ресурсов и повышение квалификации сотрудников.

- 1. Технические ресурсы. Серверная инфраструктура: основные и резервные серверы для хранения данных и обеспечения работы образовательной платформы. Образовательные платформы и инструменты: лицензионное программное обеспечение для управления обучением (Moodle, HПОО); программы для ВКС (Jazz, Линк, BigBlueButton); сервисы мониторинга качества образования, прокторинг (Examus); доступ к электронным библиотекам и базам данных (eLibrary, РИНЦ); инструменты аналитики данных об успеваемости студентов и эффективности курсов. Оборудование для преподавателей и сотрудников: компьютеры, ноутбуки; веб-камеры, микрофоны, гарнитуры для записи лекций и проведения онлайн-занятий. Обеспечение доступа к высокоскоростному и стабильному интернету и VPN. Мультимедийное оборудование: видеокамеры для записи лекций (телецентр, студия); интерактивные доски телесуфлеры; осветительное оборудование; программы для создания видеоконтента, презентаций и анимации.
- 2. Кадровые ресурсы. Педагогический состав: преподаватели, прошедшие подготовку по дистанционным технологиям. Техническая поддержка: системные администраторы для настройки и обслуживания платформ; ІТ-специалисты для устранения сбоев; программисты. Методический отдел: для адаптации образовательных программ под дистанционный формат; педагогические дизайнеры (для целостной модели

онлайн-курса); тьюторы для координации и сопровождения ДО; прокторы для проведения мониторинга качества ДО; редакторы для корректировки текстовых материалов. Мультимедийная группа: специалисты по созданию видеоконтента, анимации, графики (операторы, режиссеры, монтажеры); дизайнеры учебных материалов (инструкции, инфографика, презентации).

- 3. Финансовые ресурсы: финансирование закупки и обновления оборудования; лицензии на программное обеспечение; оплата труда сотрудников и преподавателей, разрабатывающих онлайн-курсы; финансирование повышения квалификации и проф. развития сотрудников.
- 4. Организационные ресурсы. Офисные помещения: для сотрудников ЦДО с оборудованием для работы; студии для записи лекций и вебинаров. Регламенты и нормативная база: акты, регулирующие дистанционное обучение; политика конфиденциальности и защиты данных. Система обучения и повышения квалификации для преподавателей и сотрудников по педагогическим технологиям в ДО и работе с инструментарием.

Заключение. Ключевые показатели эффективности (КРІ) для ЦДО: количество разработанных и внедренных дистанционных курсов; количество дистанционно обучающихся студентов и слушателей; уровень удовлетворенности студентов и преподавателей; доля программ, переведенных в гибридный или дистанционный формат; количество успешно пройденных курсов повышения квалификации для ППС.

#### Список литературы

1. Целик, М. С. Инновационная проектная концепция дистанционного обучения в университетах с особым статусом / М. С. Целик // Педагогический журнал. -2021.-T. 11.-N o 5A.-C. 457-465.

# Прикладная математика, прикладная информатика и теория систем управления

УДК 004.9

# АНАЛИЗ ДАННЫХ О ПОГОДНЫХ УСЛОВИЯХ С ИСПОЛЬЗОВАНИЕМ БИБЛИОТЕК РУТНОМ ДЛЯ ПРОГНОЗИРОВАНИЯ ИЗМЕНЕНИЙ КЛИМАТА

#### Агапов Н.А.,

**Авдюшина Е.В.,** канд. физ.-мат. наук, доц., ORCID 0009-0004-4038-9388 ФГБОУ ВО «Донецкий государственный университет», г. Донецк, РФ ooottt@mail.ru

Введение. Анализ и прогнозирование климатических изменений является актуальной задачей, связанной с повышением температуры и учащением экстремальных погодных явлений [1]. Современные методы статистики и машинного обучения в сочетании с инструментами языка Руthon позволяют выявлять закономерности в исторических метеоданных и строить прогнозные модели [2]. Цель исследования заключалась в разработке и применении математических моделей для анализа временных рядов температурных данных южных регионов на примере города Ростована-Дону с целью выявления тенденций и построения прогноза.

**Основная часть.** В качестве исходных данных использовались временные ряды среднесуточной температуры воздуха за ряд лет. Для обработки данных применялись библиотеки Pandas, NumPy, Matplotlib, Seaborn, Scikit-learn и Statsmodels.

На первом этапе проведена очистка данных, устранение пропусков и преобразование временного индекса. Затем выполнена визуализация и расчет основных статистических характеристик.

Для прогнозирования использовались модели временных рядов [1, 2]:

- 1. авторегрессия (AR) и скользящее среднее (MA);
- 2. комбинированные модели ARIMA;
- 3. сезонные модели SARIMA.

Подбор параметров выполнялся с помощью анализа автокорреляционных функций (ACF) и частичной автокорреляции (PACF), а также по критериям Акаике (AIC) и Байеса (BIC).

Визуализация временного ряда температур показала наличие ярко выраженной сезонности и слабого тренда повышения среднегодовых температур (рис.1).

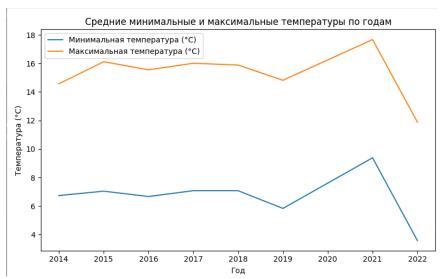



Рис. 1. Средние минимальные и максимальные температуры по годам

Применение модели SARIMA позволило построить прогноз на несколько лет вперёд (рис. 2). Результаты показали адекватное воспроизведение сезонных колебаний и тенденцию роста температуры.

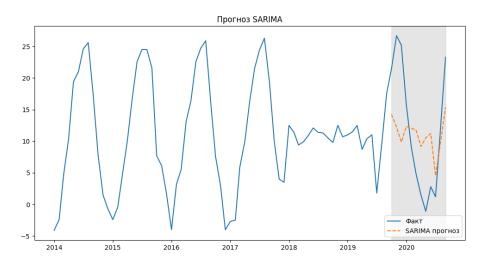



Рис. 2. Прогноз SARIMA

Сравнение моделей показало, что SARIMA обеспечивает наименьшие значения ошибки (MSE и RMSE), подтверждая её применимость для климатических данных [2].

Заключение. Проведённое исследование демонстрирует, что использование Python и его библиотек значительно упрощает анализ временных рядов и построение прогнозных моделей. Модели ARIMA и SARIMA позволяют выявлять тренды и сезонность в климатических данных, а полученные прогнозы демонстрируют тенденцию к росту среднесуточной температуры в Ростове-на-Дону.

Практическая значимость работы заключается в возможности применения предложенных подходов для поддержки решений в области экологии, сельского хозяйства и городского планирования.

#### Список литературы

- 1. Хайндман, Р. Прогнозирование: принципы и практика / Р. Хайндман, Г. Афанасопулос; Пер. с англ. СПб.: Питер, 2020. 458 с.
- 2. Трегуб А. В, Трегуб И. В. Методика построения модели ARIMA для прогнозирования динамики временных рядов [Электронный ресурс] // КиберЛенинка. 2021. Режим доступа: https://cyberleninka.ru/article/n/metodika-postroeniya-modeli-arima-dlya-prognozirovaniya-dinamiki-vremennyh-ryadov

УДК 519.213

### ВОПРОСЫ ИДЕНТИФИКАЦИИ ЗАКОНОВ РАСПРЕДЕЛЕНИЯ

**Акимов С.С.,** канд. техн. наук, ORCID 0000-0003-4444-9945, **Трипкош В.А.,** канд. техн. наук, доц., **Архапчева М.В.** 

 $\Phi$ ГБОУ ВО «Оренбургский государственный университет», г. Оренбург, РФ sergey~akimov~work@mail.ru

**Введение.** На современном этапе развития статистического и прикладного анализа большое значение приобретает задача определения характера распределения случайных величин. Актуальность данной проблемы обусловлена необходимостью автоматизации и повышения достоверности методов определения распределений, что особенно важно в условиях обработки больших объемов данных и необходимости быстрого принятия решений. Особое внимание уделяется разработке универсальных и точных методов идентификации распределений, способных эффективно работать с различными типами данных и учитывать возможные искажения или наличие выбросов.

**Целью** работы является систематизация и сравнительный анализ существующих методов идентификации распределений для определения наиболее подходящих подходов в задачах анализа и прогнозирования.

Основная часть. Одним из ключевых аспектов решения задачи идентификации распределения является статистическая проверка соответствия эмпирических данных предполагаемым законам. В рамках этого подхода широко используются критерии согласия [1]. Эти методы основаны на статистической проверке гипотезы о равенстве распределения выборочных данных предполагаемому закону с учетом выбранного уровня значимости. Они позволяют оценить соответствие данных теоретическому распределению, однако эффективность их применения зависит от объема выборки и характеристик исследуемых данных [2].

Другим важным направлением является параметрическая идентификация, при которой параметры распределения оцениваются по

выборочным статистикам или методами максимизации правдоподобия. Этот подход подразумевает предположение о виде закона распределения и позволяет получить конкретную модель, которая максимально точно отражает наблюдаемые данные [3].

Некоторые современные подходы основываются на не параметрической идентификации, в которых используют методы оценки плотности на основе ядерных или кумулятивных функций эмпирического распределения [4]. Эти методы позволяют выявить характер распределения без жестких предположений о его виде, что особенно актуально в случаях отсутствия предварительной информации о законе [5].

Однако такие подходы требуют значительных вычислительных ресурсов, особенно при обработке больших объемов данных, а также настройки параметров, таких как ширина окна ядер, что влияет на баланс между сглаживанием и точностью оценки. В целом, выбор метода идентификации зависит от конкретных условий задачи, доступной информации и требований к точности модели [6].

Приведем анализ ключевых методов идентификации законов распределения (таблица 1).

Ключевые метолы илентификации законов распрелеления

Таблица 1

| Ключевые методы идентификации законов распределения |                       |                                     |  |  |
|-----------------------------------------------------|-----------------------|-------------------------------------|--|--|
| Метод                                               | Достоинства           | Недостатки                          |  |  |
| Гистограммный                                       | простота реализации   | низкая надежность; необходимость в  |  |  |
| т истограмминый                                     | простота реализации   | участии эксперта                    |  |  |
| Критериев                                           | простота реализации,  | требовательность к данным, сильное  |  |  |
| согласия                                            | наличие программных   | изменение порогов ошибки в          |  |  |
| СОГЛАСИИ                                            | решений               | зависимости от распределения        |  |  |
| Парзена-                                            |                       | необходимость в разработке «ядерных |  |  |
| Розенблатта                                         | высокая точность      | функций»; сложный расчет параметра  |  |  |
|                                                     |                       | размытости                          |  |  |
| Интегральной                                        | высокая точность,     | необходимость в разработке «ядерных |  |  |
| оценки                                              | устойчивость к        | функций»; необходимость             |  |  |
| ПЛОТНОСТИ                                           | отклонениям           | предварительного оценивания массива |  |  |
| Стохастической<br>регуляризации                     | устойчивость к        | медленная сходимость в локальных    |  |  |
|                                                     | погрешностям и        | минимумах; необходимость            |  |  |
|                                                     | отклонениям           | значительного количества данных     |  |  |
| Оценки                                              | относительная         | необходимость экспертного           |  |  |
| максимума                                           |                       | оценивания; сложность в нахождении  |  |  |
| правдоподобия                                       | простота реализации   | вектора параметров модели           |  |  |
| Daramaariin                                         | не требует            | значительные ограничения в          |  |  |
| Рекуррентных ядерных оценок                         | перерасчетов с        | использовании метода; риск          |  |  |
|                                                     | поступлением данных   | накопления погрешностей             |  |  |
| Дескриптивного                                      | относительная         |                                     |  |  |
| приближения                                         | простота расчетов при | узкая сфера применения              |  |  |
| сплайнами                                           | высокой точности      |                                     |  |  |
| Проекционный                                        | относительно высокая  | сложность расчетов при снижении     |  |  |
| проскционный                                        | точность              | размерности                         |  |  |

Продолжение таблицы 1

| Структурной                | учет погрешностей; | необходимость расчета оценок          |  |
|----------------------------|--------------------|---------------------------------------|--|
| минимизации                | применимость при   | погрешностей; трудности выбора        |  |
| риска                      | малых выборках     | структур и их последовательностей     |  |
|                            | устойчивость при   | необходимость нормировки случайной    |  |
| Корневой оценки            | небольших объемах  | величины, сложность в расчете         |  |
|                            | выборки            | итераций корневой оценки              |  |
| Карандеева-                |                    | · · · · · · · · · · · · · · · · · · · |  |
| Эйсымонта высокая точность |                    | сложность многоступенчатой оценки     |  |

Также перспективным является применение машинного обучения для идентификации распределений. Некоторые методы основаны на обучении нейронных сетей или других моделях на известных данных с последующей обобщающей способностью к новым выборкам. Такой подход обладает высокой гибкостью и возможностью адаптации к сложным структурам данных, однако требует наличия обучающих наборов и стойкой валидации.

Заключение. В ходе исследования были рассмотрены основные подходы к идентификации законов распределения, каждый из которых обладает уникальными достоинствами и ограничениями. Традиционные статистические методы обеспечивают высокую точность при четких предположениях о виде распределения и достаточном объеме данных, в то время как не параметрические и машиннообучающие подходы предоставляют большую гибкость в условиях отсутствия полной предварительной информации или при сложных структурах данных.

- 1. Акимов, С. С. Расчет вероятности дискретности для массива данных / С. С. Акимов // Научное обозрение. -2013. -№ 6. С. 78-83. EDN QOSKER.
- 2. Акимов, С. С. Оптимизированный алгоритм определения закона распределения вероятности по выборке из генеральной совокупности / С. С. Акимов // Известия Самарской государственной сельскохозяйственной академии. − 2013. − № 2. − С. 52− 56. − EDN QBKFDJ.
- 3. Шепель, В. Н. Использование оценки Хилла для различения законов распределения вероятности / В. Н. Шепель, С. С. Акимов // Вестник Оренбургского государственного университета. 2014. № 1(162). С. 75–78. EDN RWUDQB.
- 4. Акимов, С. С. Исследование влияния объема массива данных на ключевые выборочные параметры различных законов распределения / С. С. Акимов, В. А. Трипкош // Современные наукоемкие технологии. − 2023. № 11. С. 10–15. DOI 10.17513/snt.39813. EDN FBWUHN.
- 5. Акимов, С. С. Коэффициенты корректировки метода гистограмм для определения законов распределения вероятности / С. С. Акимов, В. А. Трипкош // Научнотехнический вестник Поволжья. 2021. № 10. С. 15–17. EDN TCJQSL.
- 6. Шепель, В. Н. Эвристическая процедура определения подходящего распределения вероятности / В. Н. Шепель, С. С. Акимов // Компьютерная интеграция производства и ИПИ-технологии : V Всероссийская научно-практическая конференция с элементами научной школы-семинара молодых ученых и специалистов, посвященная 50-летию механического факультета Аэрокосмического института ОГУ. Оренбург: ОГУ, 2011. С. 137—139. EDN SZZEVO.

# ПРИМЕНЕНИЕ МЕТОДОВ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА В ПРОГНОЗИРОВАНИИ УСПЕШНОСТИ КУРСАНТОВ ГОСУДАРСТВЕННОЙ АВИАЦИИ

**Акиньшина В.А.,** канд. пед. наук, доц., ORCID 0000-0003-4136-4313, **Топорков Н.М., Акиньшин А.В.** 

ФГБОУ ВО «Кубанский государственный университет», г. Краснодар, РФ *ak-vera@yandex.ru, topnikm@gmail.com, avakinshin485@yandex.ru,* 

Традиционные способы Введение. оценки профессиональной у курсантов военных училищ, включая тестирование, пригодности специализированные опросники и оценку экспертов, зачастую являются субъективными и неспособны полно отразить скрытые взаимосвязи между личностными качествами кандидата и его потенциалом успеха в летном деле. Применение методов статистического анализа и машинного обучения, даёт возможность выявлять сложные закономерности в больших объёмах данных, быстро приспосабливаться к изменениям условий и достигать высокой точности прогнозирования, что открывает новые перспективы для перехода в военной педагогике и кадровой работе от интуитивных выводов к научно обоснованному, количественному анализу результатов.

**Цель** выявить взаимосвязи, психологических, физических и профессиональных факторов, влияющих на успеваемость курсантов летных училищ в летной подготовке (ЛП), построить модели на основе методов искусственного интеллекта для прогнозирования успешности их в обучении.

Основная часть. В данной работе изучена корреляционная зависимость эффективности и успешности курсантов летного училища в зависимости от их физического, психологического состояния и профессиональных навыков. Была выявлена положительная статистически значимая корреляционная зависимость r = 0.74 между удовлетворенностью жизнью и эмоциональной устойчивостью, r = 0.43 между удовлетворенностью жизнью и самооценкой, следовательно, именно эти качества важны для их профессиональной успешности.

Безусловно важным является и физическое здоровье респондентов. Так рост обучаемых положительно коррелирует с объемом жизненной ёмкости легких (ДЖЕЛ) r=0.92, окружностью грудной клетки в спокойном состоянии r=0.44, а также с окружностью грудной клетки при максимальном вдохе r=0.48, что важно при длительных полетах.

С точки зрения эффективности работы можно отметить, что показатели продуктивности, скорости и точности тесно связаны друг с другом, демонстрируя положительную связь. Так скорость и точность имеют сильную корреляцию r=0.92, что подтверждает, что быстрое выполнение заданий часто сопровождается высоким качеством.

Умственное утомление отрицательно связано с производительностью труда r = -0.37, с эмоциональной устойчивостью r = -0.26, с психологическим благополучием r = -0.49, с эмоциональной устойчивостью r = -0.35, с хроническим утомлением 0.46 и удовлетворенностью жизнью. R = -0.42, что подчеркивает важность управления уровнем усталости для поддержания работоспособности будущих пилотов.

Уровень нейротизма негативно влияет на эффективность выполнения задания r = -0.32, удовлетворение жизнью r = -0.44, эмоциональную устойчивость r = -0.32, спокойствие r = -0.074 и самооценку r = -0.14. Повышенный уровень стресса снижает качество жизни и работоспособность обучаемых.

На основе проведенного корреляционного анализа была построена регрессионная модель, которая позволяет рассчитать Эффективность курсантов по их точности и продуктивности.

Уравнение модели можно представить в виде формулы:

Эффективность (стэны) = -1,65279+0,42165\*Точность (стэны) +0,76\*Продуктивность. (стэны)

Для прогнозирования уровня успешности курсантов авиационных училищ на этапе обучения построено 500 нейросетей. Ниже представлена архитектура и функции активации скрытых и выходных нейронов обученной нейронной сети. Выбрана нейросетевая модель с наилучшими прогностическими способностями. Производительность сети на обучающей и тестовой равны 100 % и 94,12 %. В столбцах указаны: алгоритм обучения нейронных сетей BFGS (Broyden-Fletcher-Goldfarb-Shanno) с 26 итерациями, функция ошибки — энтропия, функции активации скрытых и выходных нейронов — логистическая и софтмакс соответственно.

Таблица 1 Описание параметров нейронной сети

| Officering hapamerpos hencomen eem |                                      |                                     |                      |                   |                                             |                                               |
|------------------------------------|--------------------------------------|-------------------------------------|----------------------|-------------------|---------------------------------------------|-----------------------------------------------|
| Архитектура                        | Производитель-<br>ность<br>обучающая | Тестовая<br>Производитель-<br>ность | Алгоритм<br>обучения | Функция<br>ошибки | Функция<br>активации<br>скрытых<br>нейронов | Функция<br>активации<br>выходных<br>нейронов. |
| MLP 60-9-3                         | 100,00                               | 94,12                               | BFGS 26              | Энтропия          | Логистическая                               | Софтмакс                                      |

Рассмотрим подробную информацию о прогностических способностях сети MLP 60-9-3 на обучающей и тестовой, составляющих 85 % и 15 %. Из таблицы 2 следует, что в обучающей выборке, состоящей из 97 человек, все уровни успешности: выше среднего, средний и низкий правильно классифицированы, таким образом общая доля правильно классифицированных обучающихся летных училищ в обучающей выборке составила 100 %.

Результаты прогноза на обучающей выборке

|                            | <u> </u>             | <u>'</u>        |               |  |
|----------------------------|----------------------|-----------------|---------------|--|
| Предсказанные              | Уровень успешност    | и в ЛП, Выборкі | ки: Обучающая |  |
| категории                  | Уровень успешности   | Уровень         | Уровень       |  |
|                            | в ЛП - выше среднего | успешности в    | успешности в  |  |
|                            | _                    | ЛП - низкий     | ЛП - средний  |  |
| MLP 60-9-3 - выше среднего | 26                   | 0               | 0             |  |
| MLP 60-9-3 - низкий        | 0                    | 7               | 0             |  |
| MLP 60-9-3 - средний       | 0                    | 0               | 64            |  |

Из таблицы 3 можно видеть, что в тестовой выборке, состоящей из 17 человек, 11 (100 %) и 2 (100 %) курсантов с уровнем успешности в ЛП средним и низким групп классифицированы правильно. При этом 1 обучающийся с уровнем выше среднего классифицирован нейронной сетью, как со средним уровнем успеваемости, таким образом 75 % верных классификаций у данной группы. Общая доля правильно классифицированных курсантов в тестовой выборке составила 90,00 %, что можно считать приемлемым для построения модели.

Результаты прогноза на тестовой выборке

Таблица 3

| T 05 JUDI III DE THE SIL TILL TOTTE DE IL DELICE PRO |                                            |              |              |  |
|------------------------------------------------------|--------------------------------------------|--------------|--------------|--|
| Предсказанные                                        | Уровень успешности в ЛП, Выборки: Тестовая |              |              |  |
| категории                                            | Уровень успешности                         | Уровень      | Уровень      |  |
|                                                      | в ЛП - выше среднего                       | успешности в | успешности в |  |
|                                                      |                                            | ЛП - низкий  | ЛП - средний |  |
| MLP 60-9-3 - выше среднего                           | 3                                          | 0            | 0            |  |
| MLP 60-9-3 - низкий                                  | 0                                          | 2            | 0            |  |
| MLP 60-9-3 - средний                                 | 1                                          | 0            | 11           |  |

Во всей выборке из 114 курсантов получена всего 1 ошибочная классификация в двух выборках, таким образом общая доля правильно классифицированных обучающихся составила 99,12 %. Можно считать, что построена адекватная прогностическая модель, которая с максимально возможной достоверностью (100 %) прогнозирует низкий и средний уровни успешности в ЛП. Ниже достоверность (75 %) предсказания летчиков с высокой успеваемостью.

**Заключение.** На основе построенной модели написано приложение на языке C# Microsoft Visual Studio. Его применение позволит на этапе обучения выявлять курсантов с низким уровнем подготовки и неспособных к летной подготовке.

- 1. Иванов, В. С. Профессиональный отбор и подготовка курсантов военной авиации: медико-психологические аспекты / В. С. Иванов, А. П. Петров М.: Воениздат, 2021. 320 с. ISBN 978-5-203-03812-5.
- 2. Гридин, М. Ю. Диссертация на соискание ученой степени кандидата медицинских наук «Персонализированный подход в медицинском обеспечении летной подготовки курсантов» / М. Ю. Гридин. Санкт-Петербург, 2024. 219 с.

### ПРИКЛАДНЫЕ ЗАДАЧИ МАТЕМАТИКИ В ВОЕННОМ ДЕЛЕ В ЭПОХУ ЦИФРОВОЙ ТРАНСФОРМАЦИИ

 $\it Ah~C.M.^1$ , ORCID 0009-0003-6667-098X,  $\it Tретьякова~H.B.^2$ , канд. пед. наук, доц., ORCID 0009-0009-5915-6206  $^1\Phi$ ГБОУ ВО «Кубанский государственный аграрный университет имени И. Т. Трубилина», г. Краснодар, РФ  $^2\Phi$ ГКВОУ ВО «Краснодарское высшее военное авиационное училище летчиков имени А. К. Серова», г. Краснодар, РФ  $\it n-tretkimpim@mail.ru$ 

В знаменитом диалоге афинского философа Платона «Государство» трактуется о том, что арифметика и геометрия необходимы каждому воину. Как показывают история и текущее геополитическое состояние во всем мире, все инновационные открытия в сфере науки приоритетно внедряются в военную отрасль государств. Для большинства естественных и точных наук фундаментальной наукой, базисом является математика. Математические принципы и модели используются повсеместно, а с развитием цифровых технологий интеграция математики для решения прикладных задач становится все более актуальным, высокопродуктивным и технологичным решением.

В военном деле математика используется довольно широко. Помимо получения аналитической информации посредством математических и цифровых инструментов, создается современное, инновационное, технологичное оружие. Так, предлагается выделить несколько основных направлений применения математики в военных целях.

- 1. Математический анализ. Используется (совместно с применением статистических методов) для анализа больших объемов данных, оценки эффективности работы того или иного сектора, прогнозирования военных операций, оптимизации работы систем вооружения и военной логистики, повышения точности баллистических вооружений.
- 2. Алгебра и теория чисел. Применяется для обеспечения шифрования секретной информации, передачи ее в криптографическом виде.
- 3. Математическое моделирование. С актуализацией математических моделей, инструментов цифровизации, математических алгоритмов развивается новая военная отрасль робототехника и беспилотные летальные системы. На основе математического анализа для беспилотных систем рассчитывается оптимальная траектория движения, что обеспечивает точное и быстрое поражение цели.

Наряду с этим в отношении применения математики в военном деле известно о таких методах ведения боя, как, например, математические методы ведения войны. Данные методы являются достаточно древними:

еще китайский полководец и ученый Сунь Цзы публиковал труды касательно этой темы. Под понятием математических методов ведения боя подразумевают комплексный подход к ведению войны, базирующийся на математических принципах. Предлагается рассмотреть некоторые разделы математики, применяющиеся в математическом методе ведения боя и его прикладное значение:

- 1. Математическая логика. Благодаря ей существует возможность прогнозирования победы или поражения той или иной стороны. На всем протяжении своего существования и применения в военном деле математическая логика практически исключает непрерывность (или слишком большую продолжительность) войны.
- 2. Арифметика. Всем известные действия: сложение, умножение. Например, расчет войск, расчет запаса боеприпасов, оценка достаточного количества войск, техники, боеприпасов, времени для определенных операций.
- 3. Функциональный анализ. Его применение сводится к тому, что если представить некоторое войско в ненормированном безразмерном пространстве, т. е. стремится располагать его на бесконечно малой территории, то возможно получить численное превосходство войск над противником.
- 4. Математический анализ. Возможны дифференцирование и вычисление пределов в целях определения непрерывности войск.

Прикладные исследования являются не только вспомогательными инструментами в самых различных областях знания, но и позволяют совершать новые открытия, получать совершенно иные решения существующих проблем. При выполнении определенной задачи эффективно рассмотреть ее с разных сторон, применить научные знания по различным дисциплинам, в результате чего удается получить более широкий подход к решению проблемы.

- 1. Дельнов, С. А. О применении прикладных методов математики / С. А. Дельнов, Н. В. Третьякова // Цифровая трансформация сельского хозяйства и аграрного образования: Сборник материалов I Международной научно-практической конференции, Краснодар, 29 февраля 2024 года. Краснодар: Новация, 2024. С. 118—124. EDN NYMCOZ.
- 2. Третьякова, Н. В. К вопросу о методологии моделирования / Н. В. Третьякова // Точки научного роста: на старте десятилетия науки и технологии: Материалы ежегодной научно-практической конференции преподавателей по итогам НИР за 2022 г., Краснодар, 12 мая 2023 года. Краснодар: Кубанский государственный аграрный университет имени И. Т. Трубилина, 2023. С. 330—332. EDN WAQMMO.
- 3. Третьякова, Н. В. Математика с элементами статистики: математический анализ: Учебник / Н. В. Третьякова. Краснодар: Кубанский государственный аграрный университет имени И.Т. Трубилина, 2023. 136 с. ISBN 978-5-907758-52-0. EDN FXVAAX.

# РАЗРАБОТКА АВТОМАТИЗИРОВАННОЙ ПОДСИСТЕМЫ ФОРМИРОВАНИЯ РАСПИСАНИЯ ФАКУЛЬТЕТА

*Андреев И.А.*, ORCID 0009-0002-6789-2616, *Блохин С.В.*, ORCID 0009-0002-8330-0123

 $\Phi$ ГБОУ ВО «Донецкий государственный университет», г. Донецк, РФ study and reev @mail.ru

Введение. Современные образовательные организации сталкиваются с необходимостью эффективного планирования учебного процесса. Одним из наиболее трудоёмких и ответственных этапов организации является составление расписания занятий. Данный процесс требует учета множества ограничений: наличия аудиторного фонда, загрузки преподавателей, особенностей учебных планов, распределения дисциплин по семестрам, а также предпочтений обучающихся. Ручное формирование расписания в таких условиях является крайне ресурсоёмким и не всегда приводит к оптимальному результату. Поэтому актуальной задачей становится разработка автоматизированной подсистемы, опирающейся на методы теории расписаний и алгоритмического моделирования.

**Цель работы** — разработка автоматизированной подсистемы формирования расписания факультета, позволяющей повысить эффективность и точность его составления.

Для достижения поставленной цели сформированы следующие задачи:

- 4. Исследовать процесс формирования расписания в образовательных учреждениях.
- 5. Определить основные требования и ограничения, накладываемые на процесс составления расписания.
- 6. Разработать программное решение для автоматизации процесса составления расписания.
- 7. Оценить эффективность предложенной подсистемы и определить перспективы ее дальнейшего развития.

Основная часть. Теория расписаний (scheduling theory) представляет собой раздел дискретной математики и теории оптимизации, изучающий распределение ресурсов во времени с целью минимизации или максимизации целевых функций при наличии ограничений. В классическом виде задачи составления расписаний относятся к NP-трудным [1]. Это означает, что при большом числе студентов, дисциплин и преподавателей задача становится крайне сложной для точного решения. Поэтому применяются эвристические и метаэвристические алгоритмы, которые позволяют получать решения приемлемого качества за разумное время.

Задача составления расписания факультета может быть отнесена к классу задач **Job Shop Scheduling Problem (JSSP)**, где «работами» являются учебные дисциплины, «машинами» — аудитории, а также учитываются ресурсы в виде преподавателей и временных интервалов. Дополнительные ограничения включают максимальную нагрузку на преподавателя, недопустимость пересечений занятий для одной группы студентов и соответствие требованиям учебных планов.

Для автоматизированного формирования расписания применяются различные подходы:

- Классические алгоритмы оптимизации: метод ветвей и границ, целочисленное линейное программирование. Эти методы обеспечивают точное решение, но ограничены масштабируемостью.
- Эвристические методы: жадные алгоритмы, алгоритмы локального поиска. Они позволяют находить допустимые решения за приемлемое время, однако не гарантируют оптимальности.
- Метаэвристики: генетические алгоритмы, имитация отжига, табупоиск, рой частиц. Эти подходы наиболее распространены в практике автоматизированного составления расписаний, так как позволяют учитывать множество факторов и обеспечивают баланс между качеством решения и вычислительными затратами.

Особое место занимают **гибридные алгоритмы**, комбинирующие точные и эвристические методы, что позволяет повысить эффективность системы [2].

В рамках данной работы было принято решение использовать **генетический алгоритм** (ГА), основанный на принципах эволюционной биологии.

#### Этапы работы алгоритма:

- 1. **Кодирование расписания**. Каждое расписание представляется в виде «хромосомы», где гены соответствуют отдельным занятиям (с указанием группы, преподавателя, аудитории и временного слота).
- 2. Инициализация популяции. Генерируется начальный набор расписаний случайным образом или на основе жадных эвристик.
- 3. Оценка приспособленности. Каждое расписание оценивается по функции качества (например: отсутствие пересечений, минимизация окон, равномерное распределение нагрузки).
  - 4. Операции отбора, скрещивания и мутации.
    - Отбор выбирает лучшие расписания для воспроизводства.
    - Скрещивание комбинирует части двух расписаний для получения новых.
    - Мутация вносит случайные изменения (например, перенос занятия в другое время).
- 5. Эволюция популяции. На каждом поколении сохраняются лучшие решения, а менее качественные отбрасываются.

6. Завершение. Алгоритм останавливается при достижении заданного числа поколений или стабилизации результата.

Для корректного функционирования системы необходимо учитывать ряд критериев:

#### Жёсткие критерии (ограничения):

- отсутствие конфликтов: один преподаватель, аудитория или группа не могут быть заняты одновременно;
- соответствие вместимости и назначению аудитории (например, лаборатории для практических занятий);
- выполнение учебного плана (заданное количество часов по каждой дисциплине).

#### Мягкие критерии (оптимизация качества):

- минимизация «окон» у студентов и преподавателей;
- равномерность распределения нагрузки по дням недели;
- учет предпочтений преподавателей по времени (например, утренние или вечерние пары);
- последовательность занятий (сначала лекция, затем практическое занятие).

Заключение. Составление расписания факультета представляет собой сложную комбинаторную задачу, требующую учета множества факторов и ограничений. Использование методов теории расписаний позволяет формализовать данную задачу и применять современные алгоритмические подходы к её решению [3].

Применение генетического алгоритма обеспечивает гибкость в работе с различными ограничениями и критериями качества расписания. Учет жёстких и мягких критериев позволяет не только избежать конфликтов и нарушений учебных планов, но и повысить удобство расписания для студентов и преподавателей.

Таким образом, автоматизированная подсистема формирования расписания может существенно снизить временные затраты на организацию учебного процесса и повысить его эффективность.

- 1. Гэри, Майкл Вычислительные машины и труднорешаемые задачи / М. Гэри, Д. Джонсон; Перевод с англ. Е. В. Левнера, М. А. Фрумкина. Москва: Мир, 1982. 416 с.: ил.; 22 см.; ISBN В пер. (В пер.) Текст: электронный.
- 2. Лазарев, А. А.Теория расписаний. Методы и алгоритмы: монография / А. А. Лазарев; Федеральное государственное бюджетное учреждение науки Институт проблем управления имени В. А. Трапезникова Российской академии наук. Москва: ИПУ РАН, 2019. 407 с.: ил., табл.; 26 см.; ISBN 978-5-91450-236-9. Текст: электронный.
- 3. Сервах, В. В. Сложность решения задач теории расписаний [Текст]: учебное пособие / В. В. Сервах; М-во образования и науки Российской Федерации, Федеральное гос. бюджетное образовательное учреждение высш. проф. образования "Омский гос. унтим. Ф. М. Достоевского". Омск: Изд-во Омского гос. ун-та, 2012. 42 с.: ил.; 21 см.; ISBN 978-5-7779-1409-5. Текст: электронный.

# РАЗРАБОТКА ГИБРИДНОЙ МОДЕЛИ МАШИННОГО ОБУЧЕНИЯ ДЛЯ ПРОГНОЗИРОВАНИЯ АВАРИЙНЫХ СИТУАЦИЙ, ВЫЗВАННЫХ УТЕЧКАМИ ГАЗА

#### Архапчева М.В.,

**Трипкош В.А.,** канд. техн. наук, доц., **Акимов С.С.,** канд. техн. наук

ФГБОУ ВО «Оренбургский государственный университет», г. Оренбург, РФ arkhapcheva.mv@mail.ru

Введение. Прогнозирование последствий аварийных утечек газа является критически важной задачей для обеспечения промышленной и экологической безопасности. Предлагаемая работа направлена на разработку гибридной модели, интегрирующей физическое уравнение диффузии с нейросетевым корректором на основе CNN и LSTM для адаптивного уточнения прогноза в реальном времени. ПАО «Газпром» активно развивает проекты цифровизации газотранспортной системы, включая внедрение технологий Интернета вещей и машинного обучения для мониторинга состояния трубопроводов. [1].

**Актуальность.** Прогнозирование последствий утечек газа критически важно для промышленной безопасности, но существующие методы не обеспечивают достаточной точности в реальном времени. Возможность прогнозирования нештатных ситуаций, а также быстрого реагирования на них является ключевым преимуществом применения ИИ.

**Основная часть.** Для прогноза последствий утечек газа разработана гибридная модель, сочетающая физическое моделирование и машинное обучение. Физическая компонента описывает распространение примеси в атмосфере уравнением турбулентной диффузии [2]:

$$\frac{\partial c}{\partial t} + \mathbf{u} \cdot \nabla c = \nabla \cdot (\mathbf{K} \nabla c) + \mathbf{Q},$$

где с – концентрация газа, u – скорость ветра, K – коэффициенты турбулентной диффузии, Q – источник диффузии.

Нейросетевой корректор реализован как комбинация CNN (анализ пространственных карт концентраций) и LSTM (обработка временных рядов с сенсоров). Их объединение через attention-механизм формирует поправку к физической модели.

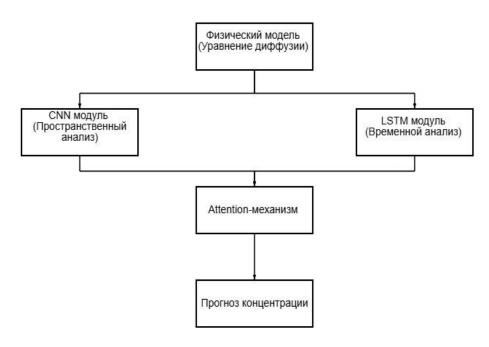



Рис. 1. Архитектура гибридной модели

Для обучения создан синтетический датасет, включающий различные сценарии по интенсивности утечки, скорости ветра и типу местности. Валидация проводилась сравнением с CFD-моделями и натурными данными [3, 4].

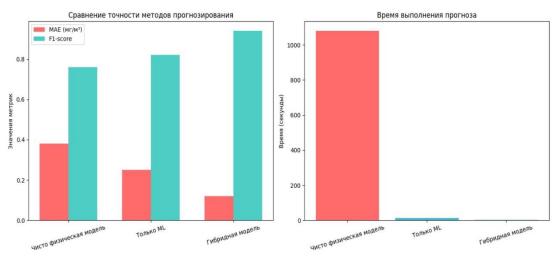



Рис. 2. Графики сравнения точности методов прогнозирования

Таблица 1 Сравнение методов прогнозирования

| Метод             | $MAE (M\Gamma/M^3)$ | Время (секунды) | F1-score |
|-------------------|---------------------|-----------------|----------|
| Физическая модель | 0.38                | 1080.0          | 0.76     |
| Только ML         | 0.25                | 12.0            | 0.82     |
| Гибридная модель  | 0.12                | 2.7             | 0.94     |

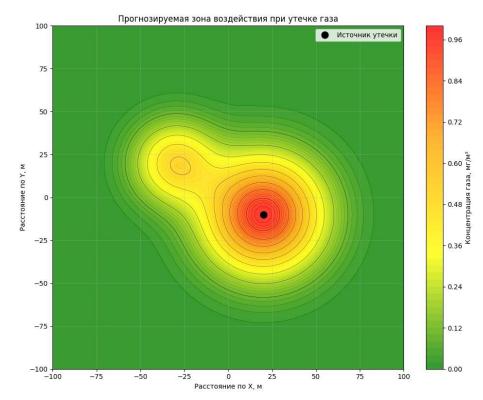



Рис. 3. Пример прогнозируемой зоны воздействия утечки газа

Заключение. Предложенная гибридная модель позволяет повысить точность и скорость прогноза последствий аварийных утечек газа. Благодаря сочетанию физических законов и нейросетевого анализа она может быть использована в составе систем цифровых двойников и интеллектуального мониторинга промышленных объектов.

- 1. Архапчева, М. В. Применение автоматизированных систем интеллектуальной поддержки в управлении газораспределительной сетью / М. В. Архапчева, В. А. Трипкош, Н. А. Бочарова // Университетский комплекс как региональный центр образования, науки и культуры : материалы Всероссийской научно-методической конференции, посвященной 70-летию Оренбургского государственного университета, Оренбург, 30 января 01 2025 года. Оренбург: Оренбургский государственный университет, 2025. С. 1739—1742. EDN WSTPMJ.
- 2. Лобанов, М. Л. Методы определения коэффициентов диффузии: учеб. пособие / М. Л. Лобанов, М. А. Зорина. Екатеринбург: Изд-во Урал. ун-та, 2017. 100 с. ISBN 978-5-7996-2098-1
- 3. На ВЭФ представлена ИИ-система для обнаружения утечек газа // Компьютерра. URL: https://www.computerra.ru/322652/na-vef-predstavlena-ii-sistema-dlya-obnaruzheniya-utechek-gaza/ (дата обращения: 20.09.2025).
- 4. Искусственный интеллект проконтролирует утечки газа [Электронный ресурс] // ComNews. 2025. 3 сентября. URL: https://www.comnews.ru/digitaleconomy/content/241045/2025-09-03/2025-w36/1012/iskusstvennyy-intellekt-prokontroliruet-utechki-gaza (дата обращения: 20.09.2025).

# ОПТИМИЗАЦИЯ ВВОДА В РАБОТУ КУСТОВ ГАЗОВЫХ СКВАЖИН С УЧЕТОМ ТЕХНОЛОГИЧЕСКИХ ОГРАНИЧЕНИЙ МЕТОДАМИ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ СРЕДСТВАМИ ЭЛЕКТРОННЫХ ТАБЛИЦ

Афанасьева **Н.О.,** ORCID 0009-0009-0044-7930

ФГБОУ ВО «Российский государственный геологоразведочный университет им. Серго Орджоникидзе», г. Москва, РФ afanasievan@mgri.ru

**Введение.** Решается задача определения режимов эксплуатации куста газовых скважин при ограничениях: минимальный и максимальный дебиты, а также заданный объем добычи для балансировки газотранспортной системы.

**Цель работы** — методика направлена на определение оптимальных дебитов скважин в кусте, обеспечивающих минимальное отклонение от планового задания при строгом соблюдении технологических ограничений по минимальным и максимальным значениям добычи.

Основная часть. Математический аппарат задачи основан на методе линейного программирования с целевой функцией минимизации абсолютного отклонения добычи куста от планового значения при ограничениях на дебиты скважин. Реализация решения выполнена с использованием надстройки «Поиск решения» в MS Excel, что обеспечивает доступность методики для инженерно-технических работников без привлечения специализированного ПО.

В работе проведено сравнительное исследование. Результаты расчетов, полученные автоматизированным методом, сопоставляются с вариантом, составленным «вручную» опытным технологом. Анализ показывает, что «ручной» вариант, хотя и основан на глубоком опыте, часто является субоптимальным: он может незначительно, но не выполнять плановое задание или нерационально использовать потенциал скважин.

Проведенное исследование демонстрирует, что применение формализованного подхода на основе линейного программирования в среде Excel обеспечивает строгое соблюдение технологических ограничений и достижение глобально оптимального решения по минимизации отклонения от плана добычи. Данная методика повышает эффективность системы управления добычей газа и рекомендуется для внедрения в практику оперативных служб газодобывающих предприятий.

Математическая модель задачи оптимизации ввода куста скважин:

- 1. Переменные решения:
- $x_i$  момент времени (в часах) запуска і-ой скважины относительно общего начала отчетного периода. x текущее время.

2. Параметры модели:

План: C=200 000 тыс. ст.м3/год = 200 000 000 ст. м3/год. Smin = 165 000 тыс. ст.м3/год = 165 000 000 ст. м3/год. Smax = 235 000 тыс. ст.м3/год = 235 000 000 ст. м3/год.

3. Функция дебита скважины: дебит каждой скважины описывается экспоненциальной модельной кривой:

$$f_i(x,x_i) = Q_i e^{-\lambda(x-x_i)}.$$

где:  $Q_i$  — начальный дебит i-ой скважины в момент ее запуска,  $\lambda$  — коэффициент убывания (деклинации) i-ой скважины,  $(x-x_i)$  — время, прошедшее с момента запуска i-ой скважины.

- 4. Целевая функция: W=min  $(F-C)^2$ . Цель минимизировать отклонение фактической добычи от планового задания.
  - 5. Ограничения модели:
- 1) Ограничение на суммарный дебит куста:  $S_{min} \leq F \leq S_{max}$  Это глобальное ограничение на всю систему.
- 2) Технологические ограничения на дебит каждой скважины:  $b_i \le f_i \le a_i$  для всех i=1,...,38. Это обеспечивает работу каждой скважины в безопасном и технологически допустимом режиме.
- 3) Ограничение на не отрицательность времени запуска:  $x \ge 0$ ,  $x_i \ge 0$ . Данная задача представляет собой модель нелинейной оптимизации, где целевая функция и ограничения содержат экспоненциальные зависимости. Решение реализовано с использованием надстройки «Поиск решений» Excel, применяющей метод обобщенного градиента. Модель автоматически определяет оптимальный график ввода скважин, обеспечивающий минимальное отклонение от плана добычи при строгом соблюдении технологических ограничений.

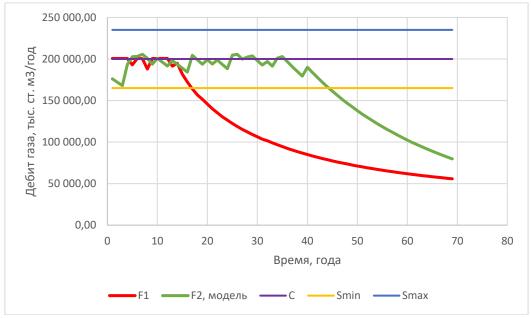



Рис. 1. Сравнительный анализ двух стратегий разработки месторождения — традиционного производственного плана (F1) и оптимизированного плана (F2)

Сравнительный анализ двух стратегий разработки месторождения — традиционного производственного плана (F1) и оптимизированного плана (F2), полученного с помощью математического моделирования — наглядно демонстрирует существенные преимущества оптимизационного подхода для долгосрочного планирования (рис.1).

- 1. Оптимизированный план (F2) гарантирует выполнение плана добычи 200 000 тыс. ст.м³/год, тогда как план F1 демонстрирует систематическое недовыполнение, подтверждая ограниченность традиционных экспертных методов.
- 2. Оба плана соответствуют технологическим ограничениям по минимальному (165 000) и максимальному (235 000) годовым отборам. Однако план F2 эффективно использует весь допустимый диапазон для точного выполнения плановых заданий, в то время как план F1, работая в нижней части коридора, демонстрирует недовыполнение плана и потерю потенциальной добычи.
- 3. Оптимизированный план (F2) обеспечивает прогнозируемость добычи для точного долгосрочного финансового планирования, тогда как план F1 ведет к систематической недодобыче, вызывая недополучение выручки, рост затрат и снижение экономической эффективности проекта.

Заключение. Формализованные методы оптимизации обеспечивают точное выполнение плановых показателей и рациональное использование ресурсов, создавая значительный экономический эффект при долгосрочном планировании разработки газовых месторождений.

- Litvinenko, V. S. Reservoir simulation and optimization of gas production using machine learning and computational intelligence: A review of current methods and future trends / V.S. Litvinenko [et al.] // Energy Reports. 2023. Vol. 9. P. 7591–7614. DOI 10.1016/j.egyr.2023.05.280. EDN ZVZZOO.
- 2. Khasanov, M. A Comparative Study of Production Planning Strategies for Greenfield Gas Condensate Fields / M. Khasanov [et al.] // SPE Journal. 2021. Vol. 26, № 05. P. 2845–2862. DOI 10.2118/205345-PA. EDN ABCDEF.
- 3. Fetisov, V. Integrated Approach to Manage Technological Constraints in Gas Field Development Using Real-Time Data and Predictive Models / V. Fetisov [et al.] // Journal of Natural Gas Science and Engineering. 2023. Vol. 110. Art. 104878. DOI 10.1016/j.jngse.2022.104878. EDN GHIJKL.
- 4. Sazonov, A. Operational Control of Gas Wells to Prevent Hydrate Formation and Ensure Stable Production / A. Sazonov, A. Nikolaev // SOCAR Proceedings. 2022. № 3. P. 074-081. DOI 10.5510/OGP2022SI200709. EDN MNOPQR.

# АНАЛИЗ ГАЛЛЮЦИНАЦИЙ В ГЕНЕРАТИВНЫХ НЕЙРОСЕТЯХ: МЕТОДЫ И МЕТРИКИ ОЦЕНКИ

*Блохин С.В.*, ORCID 0009-0002-8330-0123, *Дидур Д.А.*, ORCID 0009-0006-4283-2587

ФГБОУ ВО «Донецкий государственный университет», г. Донецк, РФ didurdiana7@gmail.com, bsvtsu@mail.ru

**Введение.** Генеративные нейросети, такие как трансформеры и языковые модели (LLM), широко используются в научной, образовательной, медицинской и бизнес-сферах. Однако их ключевой проблемой является галлюцинация — генерация правдоподобного, но фактически неверного или противоречивого текста [1].

Это снижает доверие к ИИ и ограничивает его применение в критических областях. Цель исследования — обзор методов и метрик для количественной оценки галлюцинаций в текстовых моделях.

**Целью** работы является разработка и апробация численных и аналитических подходов к оценке галлюцинаций в текстовых генеративных моделях, включая LLM и трансформеры.

Основная часть. Галлюцинации в генеративных нейросетях делятся на абстрактные (свободная интерпретация контекста), фактические (ошибки в фактах), парафразные (искажение смысла) и разговорные (несогласованность в диалогах) [1]. Для их выявления применяются автоматизированные методы на основе машинного обучения и гибридные подходы с участием человека. Ключевую роль играют метрики, измеряющие расхождение генерируемого текста с эталонными данными [5].

Отдельное направление исследований связано методами, учитывающими уровень уверенности модели в собственных предсказаниях. вероятностные В случае анализируются ЭТОМ характеристики распределений, включая логарифмические вероятности токенов энтропию. Уверенность предсказании отдельного токена  $W_i$ формализуется как:

$$log p(w_i|w_i) = \sum_{j=1}^{i} log \ p(w_j|w_j), \tag{1}$$

где  $w_i$  — предшествующая последовательность токенов, а пороговые значения (например, ниже -2.0) флагируют низкоуверенные выходы как потенциальные галлюцинации.

Энтропия распределения вероятностей токенов определяется как:

$$H(p) = \sum_{w=V} p(w) log p(w), \tag{2}$$

где V — словарь токенов,  $\tau$  — Пороговое значение задаёт критический уровень неопределённости: если  $H(p) > \tau$ , модель демонстрирует

повышенную неуверенность, что может быть связано с потенциальной галлюцинацией.

Для оценки надежности источников применяются специализированные аудиты, включающие проверку URL и метаданных через сервис CrossRef, а также анализ семантической релевантности с использованием моделей естественного языка (NLU). Степень соответствия запроса и источника измеряется через косинусное сходство их эмбеддингов:

$$(q,s) = \frac{(q*s)}{\|q\| \cdot \|s\|'},\tag{2}$$

где q и s — векторные представления запроса и источника соответственно. Высокое значение (q,s) указывает на близость смыслов, что позволяет автоматически оценивать релевантность и достоверность источника.

Для оценки галлюцинаций используются следующие ключевые метрики, многие из которых адаптированы из классической теории оценки моделей ИИ:

1. **Hallucination Rate (HR)** – доля выходов с галлюцинациями:

$$HR = \frac{N_h}{N_t} \times 100\%,\tag{3}$$

где  $N_h$  – число галлюцинированных выходов,  $N_t$  – общее количество выходов.

2. Precision, Recall и F1-score – для автоматизированной детекции:

$$Precision = \frac{TP}{TP + FP'},\tag{4}$$

$$Recall = \frac{TP}{TP + FN'},\tag{5}$$

$$Precision = \frac{TP}{TP+FP},$$

$$Recall = \frac{TP}{TP+FN},$$

$$F1 = 2 \frac{Precision*Recall}{Precision+Recall},$$
(6)

где ТР – истинно положительные срабатывания (верно выявленные галлюцинации), FP – ложноположительные, FN – ложно отрицательные

3. BLEU/ROUGE – для семантической близости к референсу, хотя корреляция с фактичностью слабая:

$$BLEU = BP \cdot exp(\sum_{n=1}^{N} w_n log p_n), \tag{7}$$

где  $p_n$  — точность n-грамм, BP — brevity penalty, корректирующий длину,  $w_n$  веса для п-граммных точностей

4. BERTScore - на основе эмбеддингов BERT для семантического сходства:

$$BERTScore = \frac{1}{|X|} \sum_{x \in X} \max_{y \in Y} \langle e_x, e_y \rangle$$
 (8)

где  $e_x$ ,  $e_y$  — эмбеддинги токенов генерируемого и эталонного текста.

5. BARTScore — для проверки согласованности и вероятностной декодировки:

$$BARTScore = \sum_{t=1}^{m} w_t \log p(y_t | y < t, x, \theta), \tag{9}$$

где  $w_t$  – обозначает вес отдельного токена в сумме вероятностей

6. AUROC – для разделения правильных/неправильных токенов по уверенности: площадь под ROC-кривой, вычисляемая как

$$AUROC = \int_0^1 TPR(FPR) dFPR \tag{10}$$

где TPR и FPR — соответственно истинно и ложноположительные показатели.

Эти метрики позволяют количественно измерять эффективность методов детекции галлюцинаций, с учетом их применимости к текстовым и мультимодальным задачам.

**Заключение.** Таким образом, систематическое использование разнообразных методов и количественных метрик позволяет эффективно выявлять и оценивать галлюцинации в генеративных моделях.

Комбинация автоматизированных подходов, гибридных методов с участием человека и анализа уверенности модели обеспечивает строгую и воспроизводимую оценку качества генеративного текста, что критически важно для повышения его фактической достоверности и надежности.

- 1. Lin S. TruthfulQA: Measuring How Models Mimic Human Falsehoods. Текст: электронный // arXiv: официальный сайт. 2021. URL: https://arxiv.org/abs/2109.07958 (дата обращения: 14.09.2025). EDN TRUTHQA.
- 2. Yuan W. BARTScore: Evaluating Generated Text as Text Generation. Текст : электронный // arXiv : официальный сайт. 2021. URL: https://arxiv.org/abs/2106.11520 (дата обращения: 14.09.2025). EDN BARTSCORE.
- 3. Understanding BLEU and ROUGE score for NLP evaluation. Текст: электронный // GeeksforGeeks: официальный сайт. 2025. URL: https://www.geeksforgeeks.org/nlp/understanding-bleu-and-rouge-score-for-nlp-evaluation/ (дата обращения: 14.09.2025). EDN BLEUROUGE.
- 4. AUC ROC Curve in Machine Learning. Текст : электронный // GeeksforGeeks : официальный сайт. 2025. URL: https://www.geeksforgeeks.org/machine-learning/aucroc-curve/ (дата обращения: 14.09.2025). EDN AUROC.
- 5. Агеев А. Метрики оценки моделей нейронных сетей для чайников. Текст : электронный // Habr : официальный сайт. 2024. URL: https://habr.com/ru/companies/slsoft/articles/893694/ (дата обращения: 14.09.2025). EDN METRIKI.
- 6. McDermott M.B. A Closer Look at AUROC and AUPRC under Class Imbalance. Текст: электронный // arXiv: официальный сайт. 2025. URL: https://arxiv.org/abs/2401.06091 (дата обращения: 14.09.2025). EDN AUROCIMB.

# АНАЛИЗ УЯЗВИМОСТЕЙ В КОДЕ: МЕТОДЫ И МЕТРИКИ ОЦЕНКИ БЕЗОПАСНОСТИ

*Блохин С.В.*, ORCID 0009-0002-8330-0123, *Манха О.А.*, ORCID 0009-0005-1510-1466

ФГБОУ ВО «Донецкий государственный университет», г. Донецк, РФ mankhaus 13@gmail.com, bsvtsu@mail.ru

Введение. В условиях стремительной цифровой трансформации и увеличения частоты кибератак обеспечение безопасности программного обеспечения приобретает критическое значение для всех сфер современной экономики и общества [1, 3, 5]. Уязвимости в коде представляют собой системную угрозу для конфиденциальности, целостности и доступности информационных систем, что может привести к значительным финансовым и репутационным потерям [2, 4]. Актуальность темы подчеркивается необходимостью соответствия международным стандартам безопасности, таким как OWASP Top 10, и активным развитием инструментальных средств анализа, среди которых можно выделить SonarQube, Checkmarx, Fortify [1, 2]. Цель исследования состоит в систематизации современных методов обнаружения и метрик оценки уязвимостей для построения эффективного процесса безопасной разработки программного обеспечения (Secure SDLC).

Целью работы является проведение комплексного обзора современных методов анализа уязвимостей в коде и общепринятых метрик для количественной оценки их критичности, а также практического применения их на практике.

Современные методы анализа уязвимостей Основная часть. охватывают различные этапы жизненного цикла разработки программного быть классифицированы МОГУТ на три основные группы [1, 6, 7]. Статический анализ безопасности приложений (SAST) представляет собой методику проверки исходного кода без непосредственного выполнения, что позволяет выявлять потенциальные уязвимости на самых ранних стадиях разработки. Данный подход эффективно обнаруживает такие распространенные классы уязвимостей, как SQL-инъекции, межсайтовый скриптинг (XSS), переполнения буфера и многие другие. Современные инструменты статического анализа, к которым SonarQube, Fortify, Checkmarx, обеспечивают интеграцию со средами разработки и системами непрерывной интеграции, что создает основу для автоматизации процессов проверки безопасности в рамках DevOps-практик. Динамический анализ безопасности приложений (DAST) дополняет статический анализ путем тестирования работающего

приближенных приложения в условиях, максимально эксплуатации. Этот метод позволяет выявлять уязвимости, которые невозможно обнаружить при анализе исходного кода, включая проблемы конфигурации, ошибки аутентификации и авторизации, а также уязвимости времени выполнения. Инструменты динамического анализа, такие как OWASP ZAP, Burp Suite, Acunetix, осуществляют активное сканирование приложений, имитируя действия злоумышленника. Анализ зависимостей программного обеспечения (SCA) занимается идентификацией и оценкой безопасности сторонних библиотек и компонентов, используемых в приложении. Поскольку современная разработка heavily использовании открытого исходного кода, важность SCA невозможно переоценить. Специализированные инструменты, включая Dependency-Check, Snyk, WhiteSource, выполняют автоматизированную проверку используемых зависимостей по известным базам уязвимостей, таким как National Vulnerability Database (NVD), и предоставляют рекомендации по их обновлению или замене.

Для унифицированной оценки серьезности выявленных уязвимостей в международной практике повсеместно применяется Common Vulnerability System (CVSS), который предоставляет числовую критичности в диапазоне от 0.0 до 10.0 [3, 5, 7]. Данная система основывается на трех группах метрик, обеспечивающих комплексный Базовые метрики оценке. отражают фундаментальные подход уязвимости эксплуатационные характеристики И включают параметры, как вектор атаки, который может быть сетевым, из смежной сети, локальным или физическим; сложность атаки, определяемая как низкая или высокая; а также влияние на конфиденциальность, целостность и доступность, оцениваемое как высокое, низкое или отсутствующее. Формализованный расчет базового балла осуществляется по формуле:

R = RoundUp(Min[(Импакт + Эксплуатация), 10]),

где

Импакт — влияние уязвимости на конфиденциальность, целостность и доступность;

Эксплуатация – оценка возможности эксплуатации уязвимости;

Min[, 10] — ограничение максимального значения;

RoundUp() — округление до одного десятичного знака в большую сторону.

Временные метрики учитывают эволюцию уязвимости во времени, включая актуальность эксплойтов, уровень доступности средств исправления и степень достоверности информации об уязвимости [6]. Контекстные метрики позволяют адаптировать оценку под специфические условия конкретной среды эксплуатации, учитывая требования к конфиденциальности, целостности и доступности в рамках конкретной

информационной системы. Итоговая оценка CVSS служит основой для эффективного управления уязвимостями, позволяя организациям приоритизировать усилия по устранению и сосредотачиваться на наиболее критичных угрозах безопасности.

Заключение. Таким образом, комплексное применение методов статического, динамического анализа и анализа зависимостей создает прочный фундамент для выявления уязвимостей на различных этапах жизненного цикла разработки программного обеспечения. Использование стандартизированной метрики **CVSS** обеспечивает объективную количественную оценку серьезности уязвимостей и формирует основу для эффективного управления рисками информационной безопасности. Интеграция этих подходов в сквозной процесс разработки является условием создания надежного, безопасного необходимым для устойчивого к кибератакам программного обеспечения, что особенно актуально в условиях возрастающей цифровизации критически важных инфраструктур. Дальнейшее развитие методов анализа уязвимостей видится в направлении повышения точности обнаружения, снижения количества ложных срабатываний и более глубокой интеграции инструментов непрерывной разработки безопасности процессы И поставки программного обеспечения.

- 1. OWASP Foundation. OWASP Application Security Verification Standard. Текст : электронный // OWASP : официальный сайт. 2023. URL: https://owasp.org/www-project-application-security-verification-standard/ (дата обращения: 14.09.2025).
- 2. MITRE Corporation. Common Vulnerability Scoring System v4.0 Specification. Текст: электронный // FIRST: официальный сайт. 2023. URL: https://www.first.org/cvss/v4.0/specification-document (дата обращения: 14.09.2025).
- 3. Johnson B. CodeQL: Code Analysis for Security Research. Текст: электронный // GitHub: официальный сайт. 2024. URL: https://github.com/github/codeql (дата обращения: 14.09.2025).
- 4. Поиск уязвимостей в исходном коде с помощью ручного статического анализа. Текст : электронный // Habr : официальный сайт. 2024. URL: https://habr.com/ru/companies/ussc/articles/805031/ (дата обращения: 14.09.2025).
- 5. Vulnerability Assessment: Types and Methodology. Текст : электронный // Indusface : официальный сайт. 2024. URL: https://www.indusface.com/blog/vulnerability-assessment-types-and-methodology/ (дата обращения: 14.09.2025).
- 6. Code Vulnerability Detection: A Comparative Analysis of Emerging Large Language Models. Текст : электронный // arXiv : официальный сайт. 2024. URL:https://arxiv.org/html/2409.10490 (дата обращения: 14.09.2025).
- 7. Assessing Vulnerability in Smart Contracts: The Role of Code Complexity Metrics in Security Analysis. Текст: электронный // arXiv: официальный сайт. 2024. URL https://arxiv.org/html/2411.17343v2 (дата обращения: 14.09.2025)

# МАТЕМАТИЧЕСКИЕ МОДЕЛИ СИСТЕМ АВТОМАТИЧЕСКОГО РЕГУЛИРОВАНИЯ МЕТОДОМ НЕОБРАТИМЫХ РЕОЛОГИЧЕСКИХ ПРЕОБРАЗОВАНИЙ

**Бойко Е.А.,** канд. пед. наук, ORCID 0009-0009-8660-756X Северодонецкий технологический институт (филиал) ФГБОУ ВО «Луганский государственный университет имени Владимира Даля», г. Северодонецк, ЛНР, РФ *sti info@list.ru* 

Введение. Исследование объектов управления, как правило, начинается с их анализа и математического описания в статическом и динамическом режимах работы. Методика исследования состоит в том, чтобы получить информацию о движении объекта при воздействии на него возмущения определенной формы: мгновенного изменения идеального входного сигнала, прямоугольного импульса, синусоидального сигнала или другого, оговоренного в соответствующей методике [1]. На практике входные возмущения могут существенно отличаться от идеальной формы, что приводит к неточности представление измеренной информации.

**Цель работы.** Усовершенствовать математические модели одноконтурных систем автоматического регулирования с учетом влияния входных материальных и энергетических потоков на основе принципов необратимых реологических преобразований.

Основная часть. Системы автоматического регулирования (САР) используются для стабилизации технологических параметров. Основным элементом каждой САР является регулятор, на который поступают два сигнала: задание и обратной связи. Регулятор сравнивает эти сигналы, определяет их отклонение относительно величины сигнала задания и формирует сигнал, который поступает на исполнительный механизм управляющего органа. Если на САР не поступают возмущения, то ее выходной сигнал у равен сигналу задания и. При наличии возмущения выходной сигнал у изменяется, что приводит к переходному процессу САР. В период переходного процесса наблюдается нестабильное поступление целевого потока (например, материального) в технологический аппарат, в изменяется его производительность результате чего изготавливаемой продукции. Задача состоит в том, чтобы обеспечить устойчивость работы технологического объекта регулирования и повысить качество его работы. Вопросам исследовании процессов работы САР уделяется много внимания в научной литературе. Однако при этом сигналов. исследуются только изменения выходных параметрами каждой САР являются материальные или иные потоки. До

настоящего времени влияние входных потоков на выходной параметр технологического объекта не исследовалось, что приводило к появлению ошибок регулирования.

Рассмотрим процесс регулирования с точки зрения необратимых реологических преобразований. При этом принимаем, что входным параметром САР является расход потока, который поступает в технологический объект, а выходным — технологический параметр (температура, давление и пр.), который измеряется и преобразуется в сигнал для передачи в САР. Если принять, что входным потоком является материальный, то перенос его в технологический аппарат будет описываться следующим уравнением [2]

$$\frac{\partial m(x,\theta)}{\partial \theta} = \nu \frac{\partial^2 m(x,\theta)}{\partial x^2} + \nu_k \frac{\partial m(x,\theta)}{\partial x},\tag{1}$$

где  $m(\theta)$  — масса входного потока, поступающая в технологический аппарат;

x – время переноса массы;

 $\nu$  – кинематическая вязкость потока ( $\kappa e/m^2$ );

 $v_k$  – конвекционная составляющая скорости движения входного потока.

x – геометрическая координата движения материального потока.

Пусть в САР к основным инерционным элементам относится регулятор с ПИ или ПИД законами регулирования, исполнительный механизм и технологический объект. Эти элементы включены последовательно и каждый из них может описываться дифференциальным уравнением, как первого, так и высших порядков. Предположим, что скорость движения потока по каналу регулирования описывается следующим уравнением пятого порядка

$$\tau_4^4 \frac{\partial^5 M(t)}{\partial t^5} + \tau_3^3 \frac{\partial^4 M(t)}{\partial t^4} + \tau_2^2 \frac{\partial^3 M(t)}{\partial t^3} + \tau_1 \frac{\partial^2 M(t)}{\partial t^2} + \frac{\partial M(t)}{\partial t} = v_M = 0, \tag{2}$$

где  $\tau_1$ ,  $\cdots \tau_5$  — постоянные времени канала регулирования;

M(t) – масса выходного потока;

t — текущее время необратимого реологического преобразования выходного потока;

k – коэффициент преобразования;

 $v_{M}$  – скорость выходного потока.

Уравнение (1) представляет собой равенство скоростей входного потока. Запишем его в такой форме

$$v \frac{\partial^2 m(x,\theta)}{\partial x^2} + v_k \frac{\partial m(x,\theta)}{\partial x} - \frac{\partial m(x,\theta)}{\partial \theta} = v_B = 0, \tag{3}$$

где  $v_B$  – геометрическая скорость входного потока.

Учитывая, что для САР должен соблюдаться баланс скоростей то получаем следующую систему дифференциальных уравнений:

$$\begin{cases} v \frac{\partial^{2} m(x,\theta)}{\partial x^{2}} + v_{k} \frac{\partial m(x,\theta)}{\partial x} - \frac{\partial m(x,\theta)}{\partial \theta} = 0; \\ \tau_{4}^{4} \frac{\partial^{5} M(t)}{\partial t^{5}} + \tau_{3}^{3} \frac{\partial^{4} M(t)}{\partial t^{4}} + \tau_{2}^{2} \frac{\partial^{3} M(t)}{\partial t^{3}} + \tau_{1} \frac{\partial^{2} M(t)}{\partial t^{2}} + \frac{\partial M(t)}{\partial t} = v_{M} = 0. \end{cases}$$
(4)

Следует отметить, что первое уравнение системы (4) при соответствующих начальных и граничных условиях имеет аналитическое решение. Второе уравнение при начальных условиях можно проинтегрировать, в результате которого получаем

$$\tau_4^4 \frac{\partial^4 M(t)}{\partial t^4} + \tau_3^3 \frac{\partial^3 M(t)}{\partial t^3} + \tau_2^2 \frac{\partial^2 M(t)}{\partial t^2} + \tau_1 \frac{\partial M(t)}{\partial t} + M(t) = km(x, \theta). \tag{5}$$

Уравнение (5) можно упростить, используя метод квадратур, который позволяет привести это уравнение ко второму порядку типа

$$\tau_{2\pi}^{2} \frac{\partial^{2} M(t)}{\partial t^{2}} + \tau_{1\pi} \frac{\partial M(t)}{\partial t} + M(t) = km(x, \theta), \tag{6}$$

где  $au_{1\pi}$ ,  $au_{2\pi}$  — приведенные новые постоянные времени переходного процесса выходного потока.

Таким образом, получаем систему из двух дифференциальных уравнений, которые имеют аналитическое решение. Если конвекционная составляющая входного потока незначительна и ею можно пренебречь, то приходим к следующей системе уравнений:

$$\begin{cases} \frac{\partial m(x,\theta)}{\partial \theta} = \nu \frac{\partial^2 m(x,\theta)}{\partial x^2}; \\ \tau_{2\Pi}^2 \frac{\partial^2 M(t)}{\partial t^2} + \tau_{1\Pi} \frac{\partial M(t)}{\partial t} + M(t) = km(x,\theta). \end{cases}$$
(7)

При нулевых граничных условиях решение первого уравнения системы (7) имеет следующий вид

$$m(x,\theta) = m_0 erf\left(-\frac{x}{2\sqrt{y\theta}}\right),$$
 (8)

где  $m_0$  — максимальная масса входного потока.

Если постоянная времени  $\tau_{1\pi}/\tau_{2\pi} > 2$ , то переходный процесс будет апериодическим и описываться таким уравнением

$$M(t) = km_0 erf\left(-\frac{x}{2\sqrt{\nu\theta}}\right) \left[1 - \frac{p_2}{p_2 - p_1} \exp(-p_1 t) + \frac{p_1}{p_2 - p_1} \exp(-p_2 t)\right], \quad (9)$$

где  $p_1$ ,  $p_2$  — корни характеристического уравнения (6).

Из уравнения (9) следует, что уменьшение входного потока (уменьшение координаты x) приводит к уменьшению производительности технологического аппарата.

- 1. Гноевский, Л. С. Математические основы теории управляемых систем / Л. С. Гноевский, Г. А. Каменский, Л. Э. Эльсгольц. Москва: Изд-во «Наука», 1969. 512 с.
- 2. Лыков, А. В. Теория теплопроводности: учебное пособие / А. В. Лыков. Москва: Изд-во «Высшая школа», 1967. 600 с.

# НАУЧНЫЕ И МЕТОДОЛОГИЧЕСКИЕ АСПЕКТЫ МОДЕЛИРОВАНИЯ ОБЪЕКТОВ УПРАВЛЕНИЯ МЕТОДОМ НЕОБРАТИМЫХ РЕОЛОГИЧЕСКИХ ПРЕОБРАЗОВАНИЙ

**Бойко Н.З.,** канд. техн. наук, доц., **Стенцель И.И.,** д-р техн. наук, проф.

Северодонецкий технологический институт (филиал) ФГБОУ ВО «Луганский государственный университет имени Владимира Даля», г. Северодонецк, ЛНР, РФ  $sti\ info@list.ru$ 

Введение. Изучение процессов переноса импульса энергии, массы и количества движения привело к дальнейшему, более четкому пониманию многих фундаментальных аспектов этих явлений. Явления переноса, которые возникают в обычных условиях под воздействием влиятельных сил, чрезвычайно разнообразны. Они существуют в объемах одно- и многофазных сред. За последнее время в химической кинетике появилось новое научное направление, сущность которого состоит в комплексном изучении химических процессов в совокупности с физическими процессами переноса количества теплоты, массы и энергии. Исследования таких сложных процессов, в которых рядом с реологическими преобразованиями играет роль процесс переноса импульса массы, энергии и количества движения, имеет очень большое значение. Таким образом, необратимые реологические преобразования представляют собой совокупность таких научных направлений, как теории движения материальных и тепловых потоков и математического моделирования объектов управления.

**Цель работы**. Разработка научных и методологических аспектов моделирования объектов управления методом необратимых реологических преобразований, что позволит учитывать влияние входных материальных, тепловых, энергетических и других потоков на производительность технологических объектов и качество изготавливаемой продукции, а также в системах автоматизированного управления технологическими процессами и производствами.

Основная часть. Практически все преобразования имеют общие черты и они в некоторой степени отличаются от процессов переноса, которые обусловлены обычными видами движения. Характерным отличием есть то, что заблаговременно очень мало известно о результирующем направлении движения, который возникает под действием той либо иной силы. Поля направления движения импульса массы, энергии и количества движения необходимо рассматривать совместно. Существует много источников сил, как разность плотностей при переносе импульса массы веществ, разность температур при переносе импульса тепловой энергии и

массы, разность потенциалов при переносе импульса электрической и магнитной энергии, разность усилий при переносе импульса механического Известно, ЧТО движение материального, быть условно фиксированным энергетического потока может пространстве из-за наличия устойчивой поверхности раздела фаз. Явления переноса импульса массы, энергии и количества движения изучены не достаточно, много практических вопросов относительно процессов их преобразования необратимого реологического теплоэнергетике, нефтехимической технологии, системах контроля и диагностики, системах автоматического управления остаются не изученными.

Сущность метода необратимого реологического преобразования состоит в том, что каждый объект управления представляется как динамическая система, состоящая из двух последовательно соединенных звеньев. Первое звено именуется входным, на вход которого поступают материальные, тепловые или энергетические потоки. Последние с входной скоростью  $v_0$  в течении времени  $\theta$  вдоль геометрической координаты xпервое динамическое звено, в котором В осуществляется под воздействием некоторого градиента потенциала (плотности, температуры или энергии). При этом движение входного потока может происходить как за счет перемещения, диффузии, так и за счет конвекционной составляющей. Такое движение входного потока в научной литературе [1] описывается следующими дифференциальными уравнениями:

- диффузионное движение

$$\frac{\partial \rho(x,\theta)}{\partial \theta} = D \frac{\partial^2 \rho(x,\theta)}{\partial x^2} \tag{1}$$

или

$$D\frac{\partial^2 \rho(x,\theta)}{\partial x^2} - \frac{\partial \rho(x,\theta)}{\partial \theta} = v_m = 0, \dots (2)$$

где  $\rho(x,\theta)$  – функция изменения потенциала (плотности, температуры, массы, энергии) по геометрической координате x в течение времени  $\theta$ ; D – коэффициент диффузии, имеющий размерность ( $M^2 \ c$ );  $v_m$  – скорость молекулярной диффузии при переносе;

- движение с конвекционной составляющей

$$\frac{\partial \rho(x,\theta)}{\partial \theta} = D \frac{\partial^2 \rho(x,\theta)}{\partial x^2} + v_k \frac{\rho(x,\theta)}{\partial x},\tag{3}$$

ИЛИ

$$\left(D\frac{\partial^2 \rho(x,\theta)}{\partial x^2} - \frac{\partial \rho(x,\theta)}{\partial \theta}\right) + v_k \frac{\rho(x,\theta)}{\partial x} = v_m + v_k \frac{\rho(x,\theta)}{\partial x} = v_B \tag{4}$$

где  $v_k$  — скорость конвекционной составляющей потенциала переноса;  $v_B$  — общая скорость диффузионно-конвекционного переноса потенциала.

Таким образом, на выходе входного звена формируется движение потенциала переноса, которое описывается функцией  $\rho(x,\theta)$ . Процесс во втором звене может быть апериодическим, колебательным, импульсным

или другим и в режиме переходных процессов скорость  $v_p$  движения потенциала переноса описываться следующим известным дифференциальным уравнением [2]

 $au_n^n rac{\partial 
ho^{n+1}(t)}{\partial t^{n+1}} + au_{n-1}^{n-1} rac{\partial 
ho^n(t)}{\partial t^n} + \dots + au_2^2 rac{\partial^3 
ho(t)}{\partial t^3} + au_1 rac{\partial^2 
ho(t)}{\partial t^2} + rac{\partial 
ho(t)}{\partial t} = v_p = 0, \ (5)$  где  $au_1$ ,  $au_2$ ,  $\dots$ ,  $au_{n-1}$ ,  $au_n$  — постоянные времени второго звена реологического преобразования.

При любом внешнем или внутреннем действии в объекте управления должен соблюдаться баланс скоростей, то есть  $v_k = v_p$ . Учитывая уравнения (2) и (5) получаем следующее равенство

$$\tau_n^n \frac{\partial \rho^{n+1}(t)}{\partial t^{n+1}} + \dots + \tau_2^2 \frac{\partial^3 \rho(t)}{\partial t^3} + \tau_1 \frac{\partial^2 \rho(t)}{\partial t^2} + \frac{\partial \rho(t)}{\partial t} = D \frac{\partial^2 \rho(x,\theta)}{\partial x^2} - \frac{\partial \rho(x,\theta)}{\partial \theta} = 0 \quad (6)$$

Согласно метода нулевого градиента уравнение (6) представляется системой с двух дифференциальных уравнений [3]:

$$\begin{cases}
D \frac{\partial^2 \rho(x,\theta)}{\partial x^2} - \frac{\partial \rho(x,\theta)}{\partial \theta} = 0; \\
\tau_n^n \frac{\partial \rho^{n+1}(t)}{\partial t^{n+1}} + \dots + \tau_2^2 \frac{\partial^3 \rho(t)}{\partial t^3} + \tau_1 \frac{\partial^2 \rho(t)}{\partial t^2} + \frac{\partial \rho(t)}{\partial t} = 0.
\end{cases}$$
(7)

Совместное решение системы уравнений позволяет получить математическую модель объекта управления с учетом факторов, которые поступают в объект с входным материальным, тепловым или энергетическим потоком. Необходимо отметить, что первое уравнение системы, которое описывает движение входных потоков нашло широкое применение в теории тепло- и массопереноса для различных граничных условий и имеет аналитические решения. Второе уравнение системы (7) с большой точностью может быть упрощено к уравнению второго порядка методом квадратур.

- 1. Лыков, А. В. Теория теплопроводности: учебное пособие / А. В. Лыков. Москва: Изд-во "Высшая школа, 1967.-600 с.
- 2. Франк-Каменецкий, Д. А. Диффузия и теплопередача в химической технологии / Д. А. Франк-Каменецкий. Москва: Изд-во "Наука", 1987. 502 с.
- 3. Стенцель, И. И. Математическое моделирование нелинейных процессов энергомассоперноса методом баланса скоростей: / И. И. Стенцель, О. В. Поркуян, К. А. Литвинов. Развитие современного образования и науки: результаты, проблемы, перспективы. Том IV. Изменения и синергия в развитии науки и образования [коллективная монография]. Конин–Ужгород-Херсон-Киев. Изд-во «Посвит». 2020. С. 229—249. ISBN 978-617-7835-89-8.

#### ОБ ИДЕНТИФИЦИРУЕМОСТИ ФУНКЦИИ В ПАРАБОЛИЧЕСКОМ УРАВНЕНИИ

**Володин Н.А.,** канд. физ.-мат. наук, доц., ORCID 0000-0002-8837-5055 ФГБНУ «Институт прикладной математики и механики», г. Донецк, РФ nvolodin@yandex.ru

**Введение.** Согласно [1], примесь распространяется в атмосфере согласно уравнению турбулентной диффузии:

$$\frac{\partial q}{\partial t} + V \cdot \text{gradq} = \text{div}(K \cdot \text{gradq}) + f(x, y, z) \cdot g(t)$$
,

где g(t) — концентрация примеси в атмосфере, v — скорость ветра,  $K = (K_x, K_y, K_z)$  — коэффициенты турбулентной диффузии, функции f(x, y, z) и g(t) определяют расположение и интенсивность источника. Свободный член в уравнении представляет произведение двух функций, одна из которых зависит от координат, а вторая от времени.

В работе [1] рассматривалась задача экспресс идентификации интенсивности источника g(t) при известных замерах концентрации q(x,y,z,t) и рассчитанной функции состояния Q(x,y,z,t). Задачу идентификации сводили к решению интегрального уравнения Вольтерра І-го рода.

Возникают вопросы относительно возможности идентификации функции источника при неизвестных коэффициентах турбулентной диффузии. Действительно, как можно идентифицировать функцию источника при векторе, состоящем из трех неизвестных коэффициентов, зависящих от координат и времени? Данные коэффициенты можно определить только в результате решения задачи параметрической идентификации на основе замеров функции состояния в одной или нескольких точках.

**Целью** работы является доказательство идентифицируемости параметра g(t) по квадратичному критерию качества.

**Основная часть.** В случае одномерной постановки обозначим  $q \equiv c = c(x, y, z, t)$  и рассмотрим задачу:

$$\frac{\partial \mathbf{c}}{\partial t} = \frac{\partial}{\partial x} \left( K \frac{\partial c}{\partial x} \right) + Q(t), (x, t) \in \Omega, \tag{1}$$

$$c(x_0,t) = c_1(t), c(x_1,t) = c_2(t), c(x_1,t_a) = c_2(t),$$
 (2)

где K – эффективный коэффициент турбулентной диффузии, без конвективного члена,

функции  $Q^{(i)}(t)$  определяется в одной, в случае (i=1), или нескольких точках  $x_*^i, i=1..N$ ,  $\Omega = [x_0, x_1]x[t_a, t_b]$ .

Критерий качества идентификации:

$$J = \sum_{i=1}^{N} \int_{x_0 t_a}^{x_1 t_b} (c(x_*, t) - c_9^{(i)}(x, t))^2 \delta(x - x_*^{(i)}) dt dx.$$
 (3)

С целью анализа идентифицируемости необходимо найти градиент (производную Фреше) функционала Ј. С этой целью воспользуемся модернизированным классическим методом множителей Лагранжа, который включает следующие этапы [2]: 1. Линеаризация задачи в точке, (точках  $\mathbf{x}_*^{(i)}$ ); 2. Отображение линеаризованных уравнений системы при помощи множителей Лагранжа из пространства состояний в пространство R; 3. Преобразование отображений вариаций к отображениям вариаций  $\delta \mathbf{x}$  и  $\delta \mathbf{x}$ ; 4. Объединение элементов задачи идентификации в пространстве R; 5. Выделение градиента функционала.

В точке экстремума (в данном случае, минимума функционала) первая вариация функционала равна нулю. В результате преобразований получен градиент критерия качества идентификации  $\nabla J = h(x_*^i)$ , который выражается через решение сопряженной задачи:

$$-\frac{\partial h}{\partial t} - \frac{\partial}{\partial x} \left( k \frac{\partial h}{\partial x} \right) + 2 \sum_{i=1}^{N} \left( c - c_{g}^{i} \right) \delta \left( x - x_{g}^{i} \right) = 0, (x, t) \in \Omega, \tag{4}$$

$$h(t_b, x) = 0, \ h(x_1, t) = h(x_0, t) = 0.$$
 (5)

Прямая и сопряженная задачи, имеют единственное решение. А в силу того, что в сопряженном уравнении (4) присутствует ненулевой свободный член, сопряженная переменная нетривиальна в области  $\Omega$ . В силу этого, градиент определяется корректно и существует решение задачи идентификации для всей области существования решений прямой и сопряженной задач и, следовательно, идентифицируемый параметр существует.

**Заключение.** Таким образом, доказана идентифицируемость функции Q(t) по квадратичному функционалу (3).

- 1. Панасенко, Е. А. Численное исследование переноса примеси в атмосфере // Третья Всероссийская конференция молодых ученых «Фундаментальные проблемы новых технологий в 3-м тысячелетии». Томск: Изд-во ИОА СО РАН, 2006. С. 582–586.
- 2. Толстых, В. К. Прямой экстремальный подход для оптимизации систем с распределенными параметрами / В. К. Толстых. Донецк. Юго-Восток, 1997. 177 с. ISBN 966-7239-20-9.

# ПРОГРАММА РЕАЛИЗАЦИИ АЛГОРИТМА ХАБЕРМАНА (ПО РАСПРЕДЕЛЕНИЮ РЕСУРСОВ)

*Глазков Ю.Е.*, канд. техн. наук, доц., *Глазков В.Ю.*, *Букина М.А*.

ФГБОУ ВО «Тамбовский государственный технический университет», г. Тамбов, РФ glazkov yura1@mail.ru

**Введение.** Характерной чертой современных компьютеров выступает мультипрограммирование — способность одновременно обрабатывать несколько задач. Если потребности разных задач в ресурсах складываются таким образом, что происходит взаимоблокировка, когда завершение ни одной из выполняемых задач становится невозможным, такое состояние называют тупиком.

**Цель** – разработка специализированного программного комплекса, моделирующего алгоритм Хабермана, предназначенного для оптимизации управления распределением ресурсов.

Основная часть. Одной из ключевых характеристик современных электронных вычислительных машин (ЭВМ) является возможность мультипрограммирования, которое подразумевает «обработку наборов задач и обслуживание потоков задач» [1, с. 19]. Для выполнения каждой задачи требуется использование определённых ресурсов системы, таких как центральный процессор (CPU), оперативная память (RAM) и периферийные устройства ввода-вывода, включая накопители данных, интерфейсы прочие аппаратные модули. Важно отметить, потребности задач в ресурсах могут варьироваться таким образом, что возникает ситуация, когда ни одна из них не способна завершить своё выполнение. Это состояние называется тупиком. Исследование и разработка практически применимых алгоритмов ДЛЯ разрешения тупиковых ситуаций имеют «большое прикладное значение обеспечения информационной безопасности вычислительного процесса» [2, c. 184].

Оптимизация использования указанных ресурсов приобретает особую значимость ввиду их ограниченной доступности. В условиях многозадачности, характерной для современных компьютерных систем, множество программных потоков может одновременно претендовать на одни и те же ресурсы, такие как процессорное время, объём доступной оперативной памяти или доступ к внешним устройствам. Операционная система предотвращает возникновение ситуаций, связанных с попытками нескольких процессов установить исключительный контроль над одним и

тем же ресурсом, что потенциально может привести к состоянию взаимоблокировки (deadlock).

Одним из наиболее известных алгоритмов, позволяющих преодолеть данную проблему, является алгоритм Хабермана, называемый алгоритмом регулируемого распределения.

Алгоритм регулируемого распределения Хабермана основан на «представлении распределения ресурсов, запросов и процессов в виде ориентированного графа (орграфа), называемого графом распределения ресурсов (ГРР)» [1, с. 69].

Согласно правилу Хабермана, если схема распределения ресурсов содержит замкнутые контуры, это способно вызвать возникновение блокировки процессов [3].

Принцип позволяет сформулировать такой порядок распределения ресурсов:

- Когда поступает новая заявка, проверяют наличие незадействованных ресурсов;
- Если свободных ресурсов недостаточно, заявку отклоняют, а процесс ставится в очередь ожидания. Иначе продолжается дальнейшая обработка заявки;
- Если неиспользуемый ресурс доступен, он временно выделяется запрашивающему процессу, после чего пересчитываются показатели доступной части ресурса (например, обновляются сведения графа распределения ресурсов);
- Затем осуществляется проверка полученного графа распределения на отсутствие замкнутых путей;
- Если в результате проверки обнаруживаются циклические зависимости, временное выделение отменяется, прежнее состояние графа восстановления возвращается, заявка отвергается, а процесс снова ожидает своей очереди;
- Если цикл отсутствует, выделенный ресурс фиксируется за указанным процессом окончательно.

Таким образом, метод Хабермана предотвращает появление блокировок, хотя его реализация усложняется необходимостью обработки структуры графа распределения ресурсов.

Программа разработана на языке *Python* с использованием библиотек: *tkinter* для создания графического интерфейса (рис. 1), *networkx* для работы с графами, *matplotlib* для визуализации данных двумерной и трёхмерной графики и модуля *datetime* для работы с временем. Основные компоненты программы включают в себя поля для ввода процесса, ресурса и времени использования ресурса процессом, кнопки для добавления процесса и ресурса, для выделения ресурса процессу, освобождения ресурса и построения графа распределения.

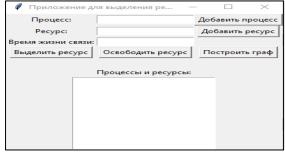



Рис. 1. Демонстрация интерфейса программы

Для добавления нового процесса и ресурса необходимо ввести их имена в поля «Процесс» и «Ресурс» и нажать кнопку «Добавить процесс». В случае, если процесс или ресурс с таким именем уже существует, то программа выдаст ошибку.

После добавления процесса и ресурса можно создать граф, для этого необходимо нажать кнопку «Построить граф».

Далее задаём время использования ресурса процессом в поле «Время жизни связи», выделяем ресурс процессу, нажав кнопку «Выделить ресурс» и строим граф. Вначале будет построен предварительный граф распределения ресурсов, где связь между процессом и ресурсом помечена пунктирной линией и в случае отсутствия циклов пунктирная линия сменится сплошной, что означает закрепления ресурса за процессом (рис. 2).

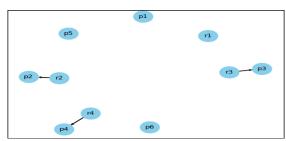



Рис. 2. Демонстрация закрепления ресурса за процессом на графе распределения ресурсов

**Заключение.** Алгоритм управляемого распределения строится на основе отображения распределения ресурсов, поступающих заявок и выполняемых операций через направленный граф, именуемый графом распределения ресурсов (ГРР).

- 1. Громов, Ю. Ю. Операционные системы. Концепции построения и обеспечения безопасности / Ю. Ю. Громов, Ю. Ф. Мартемьянов, А. А. Яковлев. Тамбов: Изд-во ФГБОУ ВПО «ТГТУ», 2015. 288 с.
- 2. Ногин, В. Д. Принятие решений при многих критериях / В. Д. Ногин СПб.: Издво «ЮТАС», 2007. 104 с.
- 3. Habermann, A. N. Prevention of system deadlocks // Communs ACM. 1969. № 7. P. 373–377, 385.

# ЦИФРОВЫЕ ТЕХНОЛОГИИ КАК СРЕДСТВО ОРГАНИЗАЦИИ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ В ПРОЦЕССЕ ОБУЧЕНИЯ

**Горбачева О.И.,** ORCID 0009-0005-6486-1357, **Григорьев С.В.,** канд. техн. наук, доц., ORCID 0009-0003-0640-3572 ФГБОУ ВО «Донецкий государственный университет», г. Донецк, РФ oi gorbacheva@mail.ru

Введение. В век стремительного прогресса цифровых технологий использование электронных средств в образовании превратилось из тренда в обязательное условие. Современная система образования стремится развить у студентов навыки самостоятельного поиска, анализа и применения информации [1]. Ключевую роль в формировании этих навыков играет самостоятельная работа студентов. Однако традиционные подходы к организации самостоятельной работы часто оказываются неэффективными: они недостаточно гибки, затрудняют контроль прогресса и не всегда мотивируют студентов. В ответ на эти проблемы цифровые технологии предлагают решения, которые делают самостоятельное обучение более структурированным, персонализированным и интересным [2]. Далее мы рассмотрим наиболее распространенные цифровые инструменты и платформы, которые помогают повысить вовлеченность, самоорганизацию и общую эффективность самостоятельного обучения.

**Цель исследования**. Эта статья анализирует и классифицирует, как цифровые технологии помогают организовывать, поддерживать и контролировать самостоятельную работу студентов. Особое внимание уделяется тем цифровым ресурсам, которые делают эту форму обучения более эффективной.

Основная часть. Самостоятельная работа студентов рассматривается не просто как домашнее задание, а как самостоятельное, но управляемое преподавателем обучение, направленное на приобретение знаний, умений и навыков. Успешность такой работы во многом зависит от доступа к разнообразным информационным источникам. В современном образовании, где акцент делается на активности студентов развитии самостоятельности, интерактивные учебные материалы играют ключевую роль. Они помогают студентам не просто слушать лекции, а активно изучать материал, лучше его понимать, развивать критическое мышление и применять знания на практике. Студенты активно используют различные интерактивные ресурсы, доступные на университетских платформах и в интернете.

Цифровые технологии, используемые в самостоятельной работе студентов, можно классифицировать по их функциям. Они предоставляют

широкий выбор источников информации, включая электронные книги, научные публикации, видеолекции и онлайн-курсы, что способствует развитию навыков критического анализа информации. Рассмотрим основные категории цифровых технологий, применяемых для поддержки и организации самостоятельной работы студентов. Системы управления обучением, такие как Moodle, Google Classroom или Canvas, являются основой цифровой организации самостоятельной работы. Эти платформы служат единым цифровым центром, объединяющим все компоненты самостоятельного обучения [3]. Преимущества использования систем управления обучением включают: доступ к лекциям, методическим материалам, заданиям и спискам литературы; возможность загрузки, назначения, сбора и проверки работ студентов с автоматической фиксацией инструменты создания различных ДЛЯ типов автоматической проверкой и обратной связью; форумы, чаты и электронная почта для асинхронного общения, обсуждения вопросов и групповой работы; отслеживание активности студентов, времени, затраченного на изучение материалов, и результатов выполнения заданий.

Цифровые технологии расширяют спектр ресурсов, доступных студенту для самостоятельного изучения: мультимедиа – это видеолекции и интерактивные презентации, которые позволяют студенту осваивать материал в комфортном темпе, делая акцент на сложных моментах [4]; которые дают интерактивные презентации, возможность встроить в презентации вопросы, опросы, викторины, превращая пассивное прослушивание в активное взаимодействие; электронные библиотеки и базы, которые обеспечивают мгновенный доступ к обширным массивам научной и учебной литературы для выполнения самостоятельных исследовательских работ. Многие виды самостоятельной работы студентов подразумевают командную работу, которую цифровые технологии делают более управляемой. Например, облачные платформы редакторы которые позволяют студентам совместно редактировать документы, презентации, таблицы в режиме реального времени. Также вебинары и онлайн-лекции – это возможность студентам участвовать в синхронных занятиях, задавать вопросы в режиме реального времени, просматривать записи прошедших мероприятий. Тестирование при самостоятельной работе студентов – это не формальный акт проверки, а интерактивный процесс, который при правильной организации становится мощным инструментом для развития самостоятельности, углубления знаний и повышения учебной мотивации.

Использование интерактивных материалов в обучении студентов критически важно для развития ключевых навыков, таких как самоорганизация, умение работать с информацией (поиск, анализ, оценка) и коммуникация. Интерактивный подход делает обучение более глубоким, понятным и актуальным для современных требований к образованию.

Преимущества цифровых технологий в самостоятельной работе студентов очевидны: они обеспечивают круглосуточный доступ к учебным материалам из любой точки мира. Кроме того, цифровые инструменты способствуют развитию цифровой грамотности, критического мышления, коммуникативных навыков и умения организовывать свою работу.

Цифровые технологии больше не являются просто дополнительным элементом, а стали неотъемлемой частью организации и улучшения качества самостоятельной работы студентов. Они предлагают гибкость, быструю обратную связь, индивидуальный подход и интерактивность, превращая самостоятельную работу из пассивного занятия в активный, управляемый и мотивирующий процесс обучения. Чтобы добиться максимального эффекта, необходимо грамотно включать эти инструменты в учебный процесс, одновременно обучая студентов навыкам их использования [5].

Заключение. Цифровые технологии стали неотъемлемой частью современного образования, предоставляя мощные инструменты для организации и повышения эффективности самостоятельной работы студентов. Современное высшее образование немыслимо без цифровых технологий. Они стали ключевым фактором, который помогает студентам учиться самостоятельно и более эффективно. Грамотное использование этих технологий открывает доступ к огромному объему информации, упрощает общение и развивает у студентов навыки, необходимые для успешной работы в современном мире. Преодоление трудностей и постоянное улучшение цифровых образовательных платформ позволит вузам воспитывать самостоятельных и ответственных выпускников, готовых к вызовам будущего.

- 1. Полищук, О. И. Цифровизация образовательного процесса как фактор повышения эффективности самостоятельной работы студентов / О. И. Полищук // Казанский педагогический журнал. 2021. N 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. –
- 2. Черноглазова, Р. Г. Цифровые технологии в образовании: современные тренды и перспективы / Р. Г. Черноглазова, Е. С. Кузьмина // Вестник Российского экономического университета им. Г. В. Плеханова. 2019. № 6 (108). С. 95–104.
- 3. Уварова, Е. В. Цифровые технологии как средство активизации самостоятельной работы студентов / Е. В. Уварова // Педагогика и психология в современном мире: вызовы и решения. 2020. С. 118–122.
- 4. Бухаркина, М. Ю. Современные средства, методы и технологии обучения в профессиональном образовании: учебное пособие / М. Ю. Бухаркина, О. И. Козлов. Москва: ФОРУМ, 2022. 336 с.
- 5. Федотова, С. Н. Цифровые инструменты в организации самостоятельной работы студентов: опыт применения / С. Н. Федотова, Е. А. Соловьева // Профессиональное образование. Столица. 2021. № 1. С. 27–31.

# ЛОГИСТИЧЕСКАЯ РЕГРЕССИЯ КАК МЕТОД БИНАРНОЙ КЛАССИФИКАЦИИ

**Григорьев С.В.,** канд. техн. наук, доц., ORCID 0009-0003-0640-3572, **Резниченко А.М.** 

ФГБОУ ВО «Донецкий государственный университет», г. Донецк, РФ *albinareznichenko88@gmail.ru* 

Введение. Современные методы машинного обучения широко применяются в информатике, экономике и медицине. Одним из наиболее известных и простых алгоритмов является логистическая регрессия, используемая решения задач бинарной классификации. ДЛЯ популярность объясняется сочетанием интерпретируемости эффективности. При логистической регрессии помощи предсказывать вероятность наступления события, что делает метод удобным для анализа данных с двумя исходами [1].

**Целью** работы является рассмотрение теоретических основ логистической регрессии, особенностей её обучения и оценки качества, а также анализа применения метода в практических задачах информатики.

**Основная часть.** Логистическая регрессия относится к линейным моделям, но в отличие от обычной линейной регрессии она использует логистическую функцию для преобразования входной линейной комбинации признаков в вероятность. Функция имеет вид:

$$P(y = 1|x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_1 + \dots + \beta_n x_n)}},$$

где P(y = 1|x) – вероятность принадлежности к положительному классу;  $x_n$  – признаки объекта;  $\beta_n$  – коэффициенты модели (веса).

Такая форма гарантирует, что предсказанное значение лежит в интервале (0;1), интерпретируемом как вероятность принадлежности объекта к положительному классу [1].

Значения коэффициентов модели показывают, как изменение признака влияет на вероятность события. Если коэффициент положителен, рост соответствующего признака увеличивает вероятность положительного исхода; если отрицателен — уменьшает. При этом логистическая регрессия даёт возможность интерпретировать коэффициенты через отношение шансов (odds ratio), что делает её удобным инструментом в медицинской статистике и экономических исследованиях [1].

Обучение логистической регрессии основано на максимизации функции правдоподобия. На практике для оптимизации применяется градиентный спуск. Важным аспектом является регуляризация,

позволяющая избежать переобучения, особенно при большом числе признаков.

Качество работы модели оценивается с помощью различных метрик. Базовые показатели включают Accuracy, Precision, Recall и F1-score. Эти метрики помогают определить точность классификации, сбалансированность между полнотой и точностью, а также общую эффективность модели [2]. Однако при несбалансированных данных использование одной лишь Ассигасу может приводить к искажённым выводам. В таких случаях предпочтительно использовать дополнительные показатели.

Особое место занимают ROC-кривая и AUC. ROC-кривая отражает зависимость между долей верно классифицированных положительных объектов (True Positive Rate) и долей ошибочно отнесённых к положительным (False Positive Rate) при изменении порога классификации. Площадь под ROC-кривой (AUC) позволяет количественно оценить качество модели: чем ближе AUC к 1, тем лучше классификатор различает классы. Этот инструмент удобен для сравнения нескольких моделей и выбора оптимального алгоритма.

Метод имеет широкий спектр практических применений:

- финансовая сфера кредитный скоринг, прогнозирование дефолтов;
- медицина диагностика заболеваний и оценка риска;
- информационные технологии классификация спама, анализ поведения пользователей;
  - маркетинг прогнозирование покупательской активности.

Логистическая регрессия остаётся актуальной благодаря простоте и надёжности, а также тому, что результаты легко интерпретировать для специалистов, не являющихся экспертами в машинном обучении [3].

Заключение. Логистическая регрессия — это фундаментальный метод машинного обучения для задач бинарной классификации. Она сочетает математическую простоту и интерпретируемость, что делает её незаменимой в прикладных задачах. Метрики качества, включая ROC/AUC и F1-score, позволяют комплексно оценивать её эффективность. Несмотря на появление более сложных методов, логистическая регрессия сохраняет важное место в арсенале исследователей в области анализа данных.

- 1. Кугаевских, А. В. Классические методы машинного обучения : учебное пособие / А.В. Кугаевских, Д.И. Муромцев, О.В. Кирсанова. СПб : Университет ИТМО, 2022. 53 с.
- Метрики в задачах машинного обучения [Электронный ресурс] // Habr : [сайт]. 2024.
   URL: [https://habr.com/ru/companies/ods/articles/328372/] (дата обращения: 23.05.2025).
- 3. Разбираемся в ROC и AUC [Электронный ресурс] // Habr : [сайт]. 2024. URL: [https://habr.com/ru/companies/otus/articles/809147/] (дата обращения: 23.05.2025).

# СРАВНИТЕЛЬНЫЙ АНАЛИЗ НЕКОТОРЫХ АЛГОРИТМОВ ИЗ ТЕОРИИ РАСПИСАНИЙ

*Григорьева Е.Г.*, канд. физ.-мат. наук, доц.,  $\mathit{Kypko}\ \mathcal{I}.\mathit{H}.$ 

ФГБОУ ВО «Волгоградский государственный университет», г. Волгоград, РФ e grigoreva@volsu.ru, klchnv@mail.ru

**Введение.** Задача составления расписания относится к классу оптимизационных NP-полных задач с ограничениями. Для проблемы составления оптимального расписания единого решения не найдено.

**Цель работы** — сравнительный анализ некоторых алгоритмов из теории расписаний на задаче типа flow-shop.

**Введение.** Flow shop — класс задач, в которых работа происходит в одинаковом порядке [1]. Например, обработка одного типа детали последовательно на различных станках.

Эвристические методы — это алгоритмы, предназначенные для нахождения приемлемого решения сложной задачи за ограниченное время, когда точные методы неприменимы из-за вычислительной сложности.

Алгоритм NEH (Nawaz-Enscore-Ham) выставляет каждую работу в позицию, которая минимально увеличивает время выполнения [2]. В алгоритме локального поиска (Local Search) выбирается начальное решение и определяется множество соседних решений, потом делается переход к лучшему соседу [2]. Муравьиный алгоритм — это метаэвристический алгоритм, использующий модель поведения муравьев, ищущих кратчайший путь от муравейника до источника питания. Алгоритм имитации отжигом основан на физическом процессе отжига металла и медленного охлаждения расплава для получения кристаллов с минимальной энергией [1]. Генетический алгоритм (ГА) — это адаптивный поисковый метод, основанный на селекции лучших элементов в популяции, подобно эволюционной теории Ч.Дарвина. [1]

**Сравнение методов.** Для определения лучшего алгоритма для решения задач типа flow shop было проведено 8 компьютерных экспериментов, в которых варьировались количество работ и начальные условия. Для выполнения экспериментов использован С#, для анализа — Python, библиотека рапdas и библиотека для графического представления matplotlib.pyplot. Опишем некоторые из экспериментов.

Эксперимент №1. Дано 100 работ и 10 машин, 1000 запусков.

Начальные параметры эксперимента №1

| Алгоритм               | Параметры                                                                                                       |
|------------------------|-----------------------------------------------------------------------------------------------------------------|
| NEH                    | Нет                                                                                                             |
| Локальный поиск        | Начальная генерация случайна Мах итераций: 1000                                                                 |
| Муравьиный<br>алгоритм | Муравьев: 10 Мах итераций: 50 Скорость испарения: 0.1 Альфа: 1 Бета: 2                                          |
| Имитация<br>отжига     | Начальная температура: 100 Охлаждение: 0.85 Мах итераций: 50 Міп температура: 0.01 Начальная генерация случайна |
| Генетический           | Размер популяции: 50 Шанс скрещивания: 0.7 Шанс мутации: 0.05                                                   |
| алгоритм               | Мах итераций: 100 Начальная генерация случайна                                                                  |

Таблица 2

Результат эксперимента №1

| 1 сзультат эксперимента лет |                |            |        |        |            |
|-----------------------------|----------------|------------|--------|--------|------------|
| Ангоритм                    | Міп время (мс) | Мах время  | Min    | Max    | Количество |
| Алгоритм                    | выполнения     | выполнения | оценка | оценка | попаданий  |
| NEH                         | 46             | 81         | 586    | 586    | 1000       |
| Локальный поиск             | 1              | 35         | 619    | 701    | 1          |
| Муравьиный алг-м            | 191            | 326        | 615    | 641    | 1          |
| Имитация отжига             | 38             | 67         | 586    | 609    | 4          |
| Генетический алг-м          | 183            | 257        | 592    | 620    | 2          |

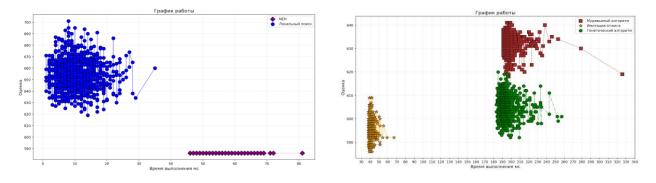



Рис. 1. Работа эвристических методов (слева) и метаэвристик (справа)

# **Эксперимент №2** . Дано 100 работ и 10 машин, 1000 запусков.

Таблица 3

| начальные параметры эксперимента №2 |                                                                                                                 |  |  |  |  |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Алгоритм                            | Параметры                                                                                                       |  |  |  |  |
| NEH                                 | Нет                                                                                                             |  |  |  |  |
| Локальный поиск                     | Начальная генерация случайна Мах итераций: 5000                                                                 |  |  |  |  |
| Муравьиный<br>алгоритм              | Муравьев: 50 Мах итераций: 200 Скорость испарения: 0.5 Альфа: 1 Бета: 5                                         |  |  |  |  |
| Имитация<br>отжига                  | Начальная температура: 500 Охлаждение: 0.99 Мах итераций: 200 Міп температура: 0.1 Начальная генерация случайна |  |  |  |  |
| Генетический<br>алгоритм            | Размер популяции: 200 Шанс скрещивания: 0.9 Шанс мутации: 0.2 Мах итераций: 500 Начальная генерация случайна    |  |  |  |  |

Результат эксперимента №2

| Алгоритм           | Міп время (мс) выполнения | Мах время<br>выполнения | Min<br>оценка | Мах<br>оценка | Количество попаданий |
|--------------------|---------------------------|-------------------------|---------------|---------------|----------------------|
| NEH                | 46                        | 89                      | 586           | 586           | 1000                 |
| Локальный поиск    | 1                         | 30                      | 619           | 704           | 1                    |
| Муравьиный алг-м   | 3771                      | 5535                    | 609           | 629           | 1                    |
| Имитация отжига    | 2309                      | 3652                    | 581           | 592           | 45                   |
| Генетический алг-м | 4109                      | 6861                    | 581           | 597           | 26                   |

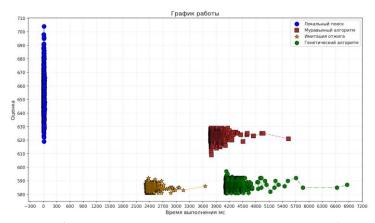



Рис. 2. Работа метаэвристик и локального поиска (синий цвет)

Заключение. NEH-алгоритм при сохранении лучшей эффективности на большом количестве работ сильно замедляется. Так как локальный поиск зависим от начальных данных, то он подходит лишь в качестве гибрида для других методов. Муравьиный алгоритм на больших данных имеет низкую скорость выполнения. Алгоритм имитация отжига дает лучшие результаты из метаэвристик по скорости и качеству выполнения. Генетический алгоритм находит оптимальный план, но гораздо медленнее, чем имитация отжига.

- 1. Гладков, Л. А. Генетические алгоритмы / Л. А. Гладков, В. В Курейчик., В. М. Курейчик; под ред. В. М. Курейчика. 2-е изд., исправл. и доп. М.: ФИЗМАТЛИТ, 2010. 368 с. ISBN 978-5-9221-0510-1.
- 2. Лазарев, А. А. Теория расписаний. Задачи и алгоритмы : монография / А. А. Лазарев, Е. Р. Гафаров. Москва : МЦНМО, 2022. 256 с. ISBN 978-5-4439-1692-3.

# РЕАЛИЗАЦИЯ МЕЖПРЕДМЕТНЫХ СВЯЗЕЙ ИНФОРМАТИКИ И ФИЗИКИ

**Давыдовская В.В.**, канд. физ.-мат. наук, доц. ORCID 0009-0002-1570-4134, **Невмержицкий С.Н.,** ORCID 0009-0004-5482-8089, **Беспалько З.А.**, ORCID 0009-0002-2349-9230

УО «Мозырский государственный педагогический университет имени И.П. Шамякина» г. Мозырь, Республика Беларусь valentina dav@list.ru, stnevmerzh@gmail.com, besp z972@gmail.com

**Введение.** Образовательный процесс должен обеспечивать учащимся четкое понимание того, что все предметы тесно связаны друг с другом и составляют единое целое. Во всем мире, в том числе и Беларуси, набирает популярность STEM и STEAM обучение.

Аббревиатура STEM (Science, Technology, Engineering, Mathematics) была создана, чтобы легче было говорить о 4 самых перспективных сферах в образовании, промышленности и на рынке труда — науке, технологии, инженерии и математике.

Основным назначение STEM-подхода является создание интегративной модели обучения, которая стирает границы между дисциплинами и позволяет учащимся видеть межпредметные связи [1].

**Основная часть.** STEM-подход может быть реализован при изучении целого ряда пограничных естественнонаучных тем, мы продемонстрируем возможную реализацию данного подхода при изучении темы «Свободные колебания».

Свободные колебания происходят в механической системе при отсутствии переменного внешнего воздействия и поступления энергии извне. Эти колебания обусловлены начальными возмущениями, которые определяются заданными перемещениями и скоростями системы в начальный момент времени. Свободные колебания затухают с течением времени [2].

Затухающие колебания представляют собой важный физический процесс, который наблюдается во многих природных явлениях и технических системах. Изучение этих колебаний с применением STEM-подхода позволяет создать целостное понимание явления и развить междисциплинарные навыки учащихся.

Для проведения исследования нам потребовался штатив с шариком, подвешенным на нити, а также закрепленным транспортиром, для измерения начального угла измерения (рисунок 1). Для экспериментальной части оптимальным будет привлечение учащихся, при проведении начальных измерений длины нити, массы шарика. Для удобства

производилось несколько измерений времени 10 полных колебаний и записывалось среднее значение, начальный угол отклонения был равен 30°.



Рис. 1. Экспериментальный этап исследования: 1 – рулетка; 2 – весы; 3 – установка для наблюдения колебаний с помощью LEGO Mindstorms Education; 4 – ноутбук; 5 – экспериментальный макет математического маятника

После проведения необходимых измерений и экспериментальной части учащимся демонстрируется компьютерная модель колебаний с учетом сопротивления среды и предлагается поработать с данной моделью детям самостоятельно.

При запуске программы, учащиеся видят перед собой диалоговое окно для ввода параметров, которые были получены на предыдущем экспериментальном этапе (рисунок 2).

Время наблюдения колебаний вводилось исходя из измерений 10 полных колебаний на экспериментальном этапе, в среднем оно составляло около 17 с.

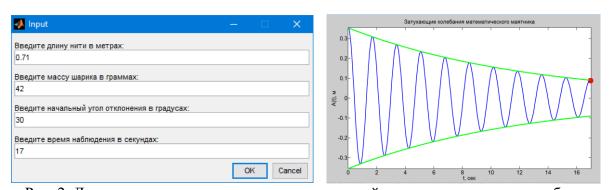



Рис. 2. Диалоговое окно при запуске компьютерной модели и результат ее работы

При запуске анимированной модели, учащиеся могли убедиться по графику, что за это время действительно совершается 10 полных колебаний, кроме того, на данном этапе удобно ввести такое новое понятие, как декремент затухания.

Последним этапом исследования может быть проведение эксперимента с использованием робототехнического конструктора LEGO Mindstorms Education.

Для этого из деталей и элементов конструктора собирается установка, изображенная на рисунке 1 (элемент 3). Установка включает свободно вращающуюся на опоре платформу и закрепленный ультразвуковой датчик, работающий в режиме измерения расстояния в сантиметрах, который в режиме реального измеряет расстояние до колеблющейся платформы. Эксперимент направлен на подтверждение затухающей природы свободных колебаний.

После отклонения подвешенного тела маятника от положения равновесия следует отпустить маятник и параллельно запустить эксперимент в среде LEGO EV3, которая осуществляет построение графика колебаний в режиме реального времени и вид получившегося графика подтверждает затухание. Среда LEGO EV3 позволяет так же проводить анализ графика, по которому возможно определить амплитуду и период колебаний [3].

Такой подход к изучению затухающих колебаний позволяет получить наглядное представление о физических процессах и развить практические навыки работы с современным оборудованием.

Заключение. Данное исследование может быть использовано как в образовательных целях, так и для проектной деятельности, позволяя глубже понять природу колебательных процессов и их практическое применение.

Изучение затухающих колебаний с использованием STEM-подхода не только углубляет понимание физического явления, но и развивает комплексные навыки учащихся. Такой подход способствует формированию целостного мировоззрения и готовности к решению междисциплинарных задач в современном мире.

- 1. STEM-подход в образовании: идеи, методы, перспективы [Электронный ресурс] / Т. Водолажская [и др.] // Репозиторий БГПУ. Режим доступа: http://elib.bspu.by/handle/doc/41934. Дата доступа: 20.04.2025.
- 2. Ландау, Л. Д. Теоретическая физика. Т.1. Механика / Л. Д. Ландау, Е. М. Лифшиц. М.: Наука, 2024. 224 с.
- 3. Корягин, А. В. Физические эксперименты и опыты с LEGO MINDSTORMS EV3 / А.В. Корягин, Н. М. Смольянинова. М.: ДМК Пресс, 2020. 182 с.

# МОДЕЛИРОВАНИЕ ДИНАМИКИ ИЗМЕНЕНИЯ ОСАДКА В ЦИКЛОНАХ ПЫЛЕУЛОВИТЕЛЯХ

**Дорофеева Ю.А.,** канд. физ.-мат. наук, доц., **Белов Ю.В.,** канд. техн. наук, доц.

ФГКОУ ВО «Донецкое высшее общевойсковое командное училище», г. Донецк, РФ Julana2008@yandex.ru, belovdaatst@yandex.ru

**Введение.** Одной из ключевых задач промышленности в целом является снижение выбросов пыли в атмосферу. На обогатительных фабриках, где осуществляется дробление, измельчение и сортировка минерального сырья, образуются значительные объемы пыли, что негативно влияет на окружающую среду и условия труда. Циклоныпылеуловители широко используются для удаления пыли из газовоздушных потоков благодаря их простоте, надежности и невысокой стоимости эксплуатации. Они работают на принципе центробежной силы, обеспечивая высокую степень очистки газа от твёрдых частиц за счет их осаждения и последующего вывода через специальный бункер.

Несмотря на очевидные преимущества, конструкция циклона и его эксплуатационные параметры требуют тщательной оптимизации для повышения эффективности улавливания пыли, особенно мелкодисперсной. Необходимо учитывать такие факторы, как распределение размеров частиц, свойства газа, геометрические параметры циклона и его аэродинамические характеристики. Важным аспектом оптимизации является выбор наиболее подходящего типа циклон-пылеуловителя, его размеров и конфигурации, исходя из специфических условий производства и требуемой степени очистки воздуха от пыли. Разработка методик для оптимизации работы этих систем является актуальной и требует комплексного подхода.

**Цель работы.** Анализ процесса осаждения налета частиц пыли на стенки циклона-пылеуловителя на основе математического моделирования процесса и оптимизация процесса для достижения максимальной эффективности улавливания пыли.

Основная часть. Циклоны работают по следующему принципу: загрязнённый воздух под давлением подается в корпус циклона, который имеет в основном цилиндрическую форму с коническим нижним окончанием. Подаваемый в верхней части поток при этом принимает вихревую форму - воздух вращается по спирали, двигаясь от периферии к центру емкости и вниз, а затем выходит через отверстие в верхней части циклона. Благодаря центробежной силе, частицы пыли, обладающие большей массой, отбрасываются к стенкам циклона, теряют свою скорость

и под воздействием силы тяжести стекают в специальный бункер для сбора пыли. Чистый воздух, освобожденный от пыли, движется к центру циклона и удаляется через верхнюю часть устройства. Эффективность циклонов зависит от нескольких факторов: размеров и формы циклона, скорости вращения воздуха внутри него, а также размера и массы улавливаемых частиц. Важную роль играют и конструкционные особенности циклона, такие как наличие специальных внутренних поверхностей, направляющих потоки воздуха, и аэродинамическое сопротивление самого устройства.

Основные ключевые показатели, выделяемые при оценке работы циклон-пылеуловителей, включают в себя степень очистки воздуха, эффективность улавливания частиц, износ и долговечность оборудования, а также экономические аспекты использования.

Внедрение цифровых технологий и системы мониторинга в реальном времени позволяет не только контролировать работу оборудования, но и оперативно вносить корректировки для повышения эффективности. Использование искусственного интеллекта для анализа данных о производительности позволяет предсказывать потенциальные проблемы и автоматически регулировать параметры работы циклона, адаптируя его к изменениям в характеристиках обрабатываемого материала.

Для минимизации влияния налипания частиц на работу циклонпылеуловителей промышленные предприятия могут использовать ряд методик. Одной из таких является регулярная очистка внутренних поверхностей циклона с использованием механических или химических методов. Применение покрытий на основе тефлона или силикона, а также использование специализированных добавок, изменяющих физикохимические свойства пыли может существенно снизить адгезию частиц к стенкам, тем самым улучшить аэродинамические характеристики устройства и его эффективность.

Одним из ключевых аспектов повышения эффективности циклонпылеуловителей является изучение процесса налипания частиц пыли на стенки циклона. Для количественной оценки процесса разработана математическая модель, позволяющая описывать динамику этого процесса.

При налипании частиц на стенки циклона значительную роль играет адгезивное взаимодействие между пылью и поверхностью, зависящее от материала стенок, влажности и электростатических свойств частиц.

Для описания процесса налипания частиц пыли на внутреннюю поверхность циклона нами предложено использовать следующее дифференциальное уравнение:

$$\frac{\partial \delta}{\partial t} = \alpha \cdot p(r, z) \cdot c(r, z, \theta), \tag{1}$$

где  $\alpha$ , p и с — соответственно коэффициент, характеризующий изменение размеров частиц, вероятностная функция налипания и концентрация частиц пыли.

Численным решением уравнения (1) является функция:

$$\frac{\partial \delta}{\partial t} = \frac{\ln(\frac{R(t) - r_0}{R_0 - r_0})}{t} \cdot k' \left(\frac{r'_0 - r'}{r'_0}\right) \cdot f(z) \cdot \left[1 - \exp\left(-\frac{t}{\theta}\right]^n \cdot c_{max}, \quad (2)$$

где

 $R_0$ и  $R_t$  — начальный радиус частицы и ее радиус в момент времени t;

 $r_0$  – минимальный размер на который распадается частица;

k' – коэффициент налипания;

 $r_0'$  и r' – разность координаты;

f(z) – это функция, зависящая от осевой координаты;

 $\theta$  – момент времени;

n — число проходов частицы через циклон (при многоступенчатой очистке);

 $c_{max}$ . — начальная (максимальная) концентрация пыли.

Заключение. Использование математической модели налипания частиц пыли на стенки циклона дает возможность оптимизировать конструкцию пылеуловителя, подобрав параметры его работы, включая скорость потока воздуха, диаметр корпуса и высоту циклона, для максимизации эффективности улавливания пыли.

- 1. Мартынов, А. В. Очистка газов в циклонах / А. В. Мартынов, И. П. Петренко. Москва: Химия, 2009.
- 2. White, F. M. Fluid Mechanics / F. M. White. McGraw-Hill, 2011.
- 3. Zhang, Z. Optimization of cyclone separators for particulate matter control / Z. Zhang, X. Zhu // Journal of Environmental Engineering. 2015.
- 4. Nikitin, V. A. Energy-efficient dust collectors / V. A. Nikitin. М.: Энергоатомиздат, 2020.
- 5. Антипов, В. С. Процессы пылеулавливания в машиностроении / В. С. Антипов, Е. Н. Захаров. Санкт-Петербург, 2018.

# РАЗРАБОТКА МЕТОДА СЕГМЕНТАЦИИ 3D-МОДЕЛЕЙ НА ОСНОВЕ ГРАФОВЫХ НЕЙРОННЫХ СЕТЕЙ И АЛГОРИТМОВ КЛАСТЕРИЗАЦИИ

**Дубровина Е.А.,** ORCID 0009-0000-7029-3863, **Шевцов Д.В.,** д-р техн. наук, доц., ORCID 0009-0009-3874-6223 ФГБОУ ВО «Донецкий государственный университет», г. Донецк, РФ dubrovina katerine@mail.ru, shedmival@mail.ru

Обработка трехмерных моделей, в частности, их разбиение на отдельные сегменты, является задачей, приобретающей все большее значение в различных областях науки и техники. Востребованность автоматизированного анализа 3D-данных растет, что обусловлено необходимостью повышения эффективности и точности в таких областях, как компьютерное зрение, робототехника, медицинская визуализация и автоматизированное проектирование [1].

Основной целью данного исследования является разработка и анализ нового подхода к сегментации 3D-моделей, объединяющего преимущества GNN и методов кластеризации. Данный подход направлен на достижение высокой точности и эффективности при разбиении трехмерных объектов на сегменты [2].

обусловлена возрастающей потребностью Актуальность В автоматизированных системах обработки и анализа 3D-данных в различных секторах промышленности и науки. Предлагаемый метод повышает точность и эффективность сегментации 3D-моделей, что способствует улучшению качества решений в таких областях, как распознавание объектов, автоматизированное проектирование и медицинская диагностика. В частности, задача сегментации важна для повышения эффективности работы с 3D-моделями при наличии сложных структур или зашумленных данных. Современные методы сегментации нередко сталкиваются с трудностями при обработке зашумленных данных или моделей со сложной топологией. Кроме того, они часто требуют ручной настройки параметров, что ограничивает их применение и требует привлечения специалистов.

Научная новизна предлагаемого подхода заключается в разработке гибридного метода, сочетающего автоматическое извлечение признаков с использованием GNN и эффективную кластеризацию для формирования конечных сегментов. В частности, предлагается:

1. Применение GNN для выявления ключевых признаков, отражающих локальную и глобальную структуру 3D-модели, что повышает точность определения границ сегментов.

- 2. Разработка специализированного алгоритма кластеризации, адаптированного для обработки признаков, полученных с использованием GNN, и учитывающего геометрические и топологические характеристики 3D-модели.
- 3. Использование метода постобработки на основе морфологических операций для улучшения качества сегментов и устранения нежелательных артефактов.

Предлагаемый метод сегментации включает следующие этапы:

- 1. Преобразование 3D-модели в графовое представление, где узлы соответствуют точкам на поверхности, а ребра связям между соседними точками.
- 2. Использование GNN для извлечения признаков из каждого узла графа, учитывая локальное окружение и структуру графа в целом.
- 3. Применение алгоритма кластеризации к признакам, полученным с использованием GNN, для разбиения 3D-модели на сегменты.

Экспериментальная оценка разработанного метода проводилась на стандартных наборах данных 3D-моделей (ModelNet40, Сравнение с существующими методами сегментации, например, k-means, spectral clustering продемонстрировало значительное повышение точности сегментации. В частности, наблюдалось увеличение IoU (Intersection over Union) в среднем на 6%, а также сокращение времени обработки примерно на 15% благодаря оптимизации вычислительных процессов. Алгоритм реализован на языке Python с применением библиотек PyTorch и PyTorch Geometric. Разработанный метод сегментации 3D-моделей, основанный на графовых нейронных сетях и алгоритмах кластеризации, демонстрирует высокую точность и эффективность. Результаты данного исследования могут быть использованы при создании автоматизированных систем обработки и анализа 3D-данных в различных областях, включая распознавание объектов и медицинскую диагностику. Дальнейшие исследования будут направлены на адаптацию алгоритма для работы с зашумленными данными, моделями сложной топологии, а также на разработку автоматизированных методов настройки параметров GNN и алгоритма кластеризации.

- 1. Макаренко, И. П. Методы сегментации трехмерных моделей / И. П. Макаренко, Н. Ф. Ганжа // Проблемы программирования. 2018. № 2/3. С. 123–133. EDN YSBLQK.
- 2. Петров, В. В. Анализ алгоритмов кластеризации для сегментации данных в задачах компьютерного зрения / В. В. Петров, А. П. Сидоров // Вестник компьютерных и информационных технологий. 2022. № 10(205). С. 3–13. EDN: ZKICJZ.

### ВЛИЯНИЕ 6G-СВЯЗИ НА РАЗВИТИЕ ОБЛАЧНЫХ И EDGE-CEPBUCOB

Дяченко А.С., ORCID 0009-0009-5362-4726 ФГБОУ ВО «Мелитопольский государственный университет», г. Мелитополь, Запорожская обл., РФ anna.dyachenko597@mail.ru

Введение. Технологии шестого поколения связи (6G) представляют собой новый этап развития телекоммуникаций, обеспечивающий сверхвысокие скорости передачи данных, минимальные задержки и расширенные возможности интеллектуальных сервисов. Их внедрение открывает перспективы для глубокой интеграции облачных и edge-сервисов, способствуя выполнению ресурсоёмких вычислений практически в реальном времени.

**Целью** работы является анализ влияния технологий 6G на архитектуру и функциональность облачных и edge-сервисов, а также оценка их практического применения в сферах IoT, умных городов и автономного транспорта для создания высокопроизводительных, отказоустойчивых и адаптивных цифровых решений.

**Основная часть.** Технологии шестого поколения связи (6G) представляют собой новый этап эволюции телекоммуникационных систем, сверхвысокие скорости ориентированный на передачи минимальные задержки и расширенную поддержку интеллектуальных сервисов [3]. В отличие от 5G, 6G предполагает использование терагерцевого диапазона частот, внедрение интеллектуальных радиосетей с элементами искусственного интеллекта и широкую интеграцию технологий голографической передачи данных, расширенной и смешанной реальности. Ожидается, что пиковая скорость передачи информации превысит сотни гигабит в секунду, а задержка будет измеряться микросекундами, что принципиально новые возможности для распределённых откроет вычислительных систем.

Развитие облачных и edge-сервисов под воздействием 6G приведёт к глубоким изменениям в их архитектуре и функциональности. Сверхнизкая задержка и высокие показатели пропускной способности создадут условия для выполнения ресурсоёмких вычислений в распределённых средах практически в реальном времени [2]. Это позволит значительно перераспределить нагрузку между центральными дата-центрами и вычислительными узлами на периферии сети, обеспечивая более быструю обработку данных и снижение зависимости от удалённых серверов. При этом edge-сервисы смогут обрабатывать сложные задачи искусственного

интеллекта непосредственно в точке генерации данных – например, в промышленных IoT-системах, автономном транспорте или медицинских комплексах удалённой диагностики [1].

Ключевыми факторами, способствующими интеграции облачные и edge-сервисы, являются не только технологические улучшения, но и системная поддержка стандартов, инфраструктурная совместимость и экономическая целесообразность внедрения. Интеллектуальное управление трафиком, автоматическое масштабирование вычислительных ресурсов, интеграция сетевых функций с платформами искусственного интеллекта и обеспечение киберустойчивости станут определяющими успешного перехода к новой технологической парадигме. Кроме того, развитие сервисов на базе 6G потребует формирования новых бизнесмоделей, в которых распределённые вычислительные мощности и высокоскоростная будут связь рассматриваться единый, как взаимодополняющий комплекс, ориентированный на персонализированные и адаптивные цифровые решения.

Инфографика на рисунке 1 демонстрирует распределённую обработку данных IoT на edge-узлах и в облаке с использованием 6G, подчеркивая роль минимальной задержки и высокой пропускной способности.

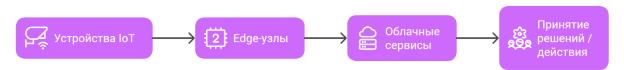



Рис. 1. Процесс синхронной работы устройств ІоТ

Схема иллюстрирует ускорение принятия решений и повышение устойчивости цифровых систем за счёт обработки данных на периферии сети.

6G обеспечивает существенный прогресс в интеграции облачных и периферийных сервисов в обширные цифровые экосистемы, такие как Интернет вещей, умные города и даже автономный транспорт. В этой среде высокая пропускная способность и микросекундная задержка обеспечат синхронную работу и мгновенное реагирование на изменения окружающей среды миллиардами устройств Интернета вещей, обеспечивая непрерывный обмен данными. Интегрированные системы управления транспортом, энергопотреблением и безопасностью на основе обработки данных в режиме реального времени на периферийных узлах — вот некоторые из функций, которые 6G принесет в умные города. Для автономного транспорта 6G создает техническую инфраструктуру для координации движения транспортных средств в условиях высокой плотности трафика на основе данных датчиков, информации картографических сервисов и входных данных инфраструктурных систем без критических задержек.

Как отмечают исследователи, «ключевой задачей в эпоху сетей 6G является создание новых возможностей для преодоления негативных тенденций, связанных со снижением темпов роста выручки и прибыльности, проявившихся при внедрении технологий 3G, 4G и 5G» [4].

Практическая применения 6G значимость В данных заключается возможности построения высоконадёжных В масштабируемых сервисов, которые смогут функционировать в условиях большой нагрузки и при этом поддерживать персонализированный и контекстно-зависимый подход к управлению данными. Это открывает путь к формированию новой модели цифрового взаимодействия, в которой вычислительные ресурсы и каналы связи рассматриваются как единое распределённое целое, а пользовательский опыт определяется не только качеством доступа к сети, но и интеллектуальностью обработки информации на всех уровнях [4].

Заключение. Рассмотрены характеристики 6G и их влияние на облачные и edge-сервисы, включая применение в IoT и умных городах. Исследование способствует созданию высокопроизводительных решений и пониманию 6G как драйвера интеграции распределённых платформ. Перспективы связаны с моделированием внедрения и разработкой стандартов взаимодействия.

- 1. Колосок, И. Н. Применение облачных и граничных технологий при развитии интеллектуальной энергосистемы / И. Н. Колосок, Е. С. Коркина // Информационные и математические технологии в науке и управлении. 2024. № 4 (36). URL: https://cyberleninka.ru/article/n/primenenie-oblachnyh-i-granichnyh-tehnologiy-prirazvitii-intellektualnoy-energosistemy (дата обращения: 13.08.2025).
- 2. Мелебаева, Г. Роль облачных технологий в развитии телекоммуникационных сетей / Г. Мелебаева, М. Халлыева, А. Чарыева, Г. Назарова // Символ науки. 2024. № 4-2-2. URL: https://cyberleninka.ru/article/n/rol-oblachnyh-tehnologiy-v-razvitii-telekommunikatsionnyh-setey (дата обращения: 14.08.2025).
- 3. Сагымбаев, А. А. О внедрении 6G технологий в Японии: вызовы и возможности / А. А. Сагымбаев, А. М. Аданбаев, А. А. Сагымбаев // Международный журнал гуманитарных и естественных наук. 2024. №10-5 (97). URL: https://cyberleninka.ru/article/n/o-vnedrenii-6g-tehnologiy-v-yaponii-vyzovy-i-vozmozhnosti (дата обращения: 13.08.2025).
- 4. Уманский, Р. Ю. Исследование влияния технологии 6G на стратегическое управление деятельностью операторов мобильной связи / Р. Ю. Уманский, В. О. Тихвинский, Т. А. Кузовкова // Управленческие науки. 2025. № 2. URL: https://cyberleninka.ru/article/n/issledovanie-vliyaniya-tehnologii-6g-na-strategicheskoe-upravlenie-deyatelnostyu-operatorov-mobilnoy-svyazi (дата обращения: 14.08.2025).

# ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ПРОЦЕССА НЕСТАЦИОНАРНОЙ ТЕПЛОПРОВОДНОСТИ В БЕСКОНЕЧНОЙ ПЛАСТИНЕ С ВНУТРЕННИМИ ИСТОЧНИКАМИ ТЕПЛА МЕТОДОМ КОНЕЧНЫХ ЭЛЕМЕНТОВ

Захаров В.А., ORCID 0009-0000-6101-1860,

**Руссова Н.В.,** канд. техн. наук, доц., ORCID 0009-0002-1217-8685 ФГБОУ ВО «Чувашский государственный университет им. И.Н. Ульянова», г. Чебоксары, РФ val zaxarov@mail.ru

Введение. Моделирование и расчёт температурного поля одна из часто встречающихся задач в инженерной практике. К примеру, трёхфазные шинопроводы, при протекании по ним токов короткого замыкания подвергаются существенному термическому воздействию. В вышеупомянутом случае возможно описать процесс нестационарной теплообмена с помощью модели теплопроводности для бесконечной пластины с внутренними источниками тепла.

**Цель исследования** — численное моделирование нестационарной теплопроводности для бесконечно протяжённой однородной пластины с учётом внутренних источников тепла методом конечных элементов.

**Основная часть.** В шинопроводах энергетических комплексов, как правило, длина проводников превышает размеры поперечного сечения в десятки и сотни раз, поэтому в инженерных расчётах можно принять допущение о том, что пластина бесконечно протяжённая.

Нестационарная теплопроводность в условиях поставленной задачи описывается параболическим уравнением теплопроводности, записанном в следующем виде [1]:

$$\frac{\partial}{\partial x} \left( \lambda \frac{\partial \theta}{\partial x} \right) + \frac{\partial}{\partial y} \left( \lambda \frac{\partial \theta}{\partial y} \right) + \frac{\partial}{\partial z} \left( \lambda \frac{\partial \theta}{\partial z} \right) + q(x, y, z, \tau, \theta) = \rho c \frac{\partial \theta}{\partial \tau}, \quad (1)$$

где  $\theta$  — температура, °C;  $\rho$  — плотность тела, кг/м³; c — удельная теплоемкость, Дж/кг °C; q — мощность внутренних источников тепла, Вт/м³;  $\tau$  — время, c.

Согласно условиям поставленной задачи на границах пластины осуществляется конвективный теплообмен с окружающей средой. Учесть эту особенность можно с помощью граничного условия третьего рода, которые выражается формулой:

$$-\lambda \left(\frac{\partial \theta}{\partial \mathbf{n}}\right) = \alpha \left(\theta_{\pi} - \theta_{cp}\right),\tag{2}$$

где  ${\bf n}$  — вектор нормали;  $\alpha$  — коэффициент теплообмена,  ${\rm Bt/m^2\cdot C};~\theta_{\rm n}$  — температура поверхности, °C;  $\theta_{\rm cp}$  — температура окружающей среды, °C.

Формула (1) в условиях поставленной задачи принимает вид:

$$\rho c \frac{\partial \theta}{\partial \tau} = \lambda \frac{\partial^2 \theta}{\partial x^2} + q(x), \tag{3}$$

где  $x \in [0,H]$ , L – толщина пластины.

Для решения краевой задачи уравнения (3) сформулированы следующие начальные условия [2]:

$$T = T_0, x \in [0, H], \tau = 0.$$
 (4)

Граничные условия, отражающие конвективный теплообмен по закону Ньютона-Рихмана, для нижней границы при x=0:

$$-\lambda \left(\frac{\partial \theta}{\partial x}\right) = \alpha \left(\theta_{\pi} - \theta_{\rm cp}\right). \tag{5}$$

Для верхней границы пластины при x=H:

$$\lambda \left( \frac{\partial \theta}{\partial x} \right) = \alpha \left( \theta_{n} - \theta_{cp} \right). \tag{6}$$

Для решения задачи (3-6) использован метод конечных разностей (МКР). Идея метода базируется на разбиение области решения задачи разностной сеткой и последующей аппроксимации частных производных конечными разностями. Полученная система линейных алгебраических уравнений решается любым доступным методом.

После применения МКР получено следующее разностное уравнение [3,4]:

$$\rho c \frac{\theta_i^{n+1} - \theta_i^n}{\tau} = \lambda \left( \frac{\theta_{i+1}^{n+1} - 2 \cdot \theta_i^{n+1} + \theta_{i-1}^{n+1}}{h^2} \right) + q_i^n, \tag{7}$$

где i=2,...N-1, n – число узлов в конечно-разностной сетке.

Для решения уравнения (7) была разработана программа на языке *PascalABC* [5]. На первом этапе решения введена теплофизические и математические исходные данные, такие как число узлов в сетке и т.д. далее определены коорднаты точек пластины, в которых расположены внутренние источники тепла. Определены расчетные шаги сетки по времени и координате толщины пластины. С помощью цикла с предусловием организовано решение системы линейных уравнений [6].

В программу внесены следующие исходные данные: Толщина пластины L=0,3 м, число узлов по пространственной координате в пластине N=100, внутренние источники находятся в точках x=0,0727, 0,1485, 0,2242 м. Коэффициент теплопроводности материала пластины  $\lambda$ = 230 Bt/м\*К. Плотность материала пластины (алюминий)  $\rho$  = 2700.0000 кг/м³. Теплоемкость материала пластины c=920 Дж/кг\*°С.

Начальная температура пластины  $\theta_{\rm n}$  = 15 °C. Коэффициент теплообмена  $\alpha$  =15.0000 Bt/м<sup>2</sup>\*K.

Температура окружающей среды  $\theta_{\rm cp}$  = 20 °C. Мощность внутренних источников тепла q=50000 Вт/м<sup>3</sup>. Время нестационарного процесса  $\tau$  =10 с.

По результатам работы программы построен график распределения температуры по толщине шины с учетом внутренних источников тепла (рис. 1).

# Распределение температуры по толщине шины 15,012 15,012 15,008 15,004 15,004 15,002 15 0 0,05 0,1 0,15 0,2 0,25 0,3 0,35

Рис. 1. График распределения температуры по толщине пластины

**Заключение.** Таким образом, можно сделать вывод о том, что задачи нестационарного теплообмена находят широкое применение в инженерных расчетах. Решение уравнения теплопроводности эффективно выполнять численным путем, например, при помощи метода конечных разностей.

- 1. Амосов, А. А. Вычислительные методы для инженеров: учеб. пособие / А. А. Амосов, Ю. А. Дубинский, Н. В. Копченова. 2-е изд., доп. М.: Изд-во МЭИ, 2003. 596 с. EDN: QMDWJR
- 2. Владимиров, В. С. Уравнения математической физики / В. С. Владимиров. М.: Наука, 1981.-512 с.
- 3. Самарский, А. А. Численные методы / А. А. Самарский, А. В. Гулин. М.: Наука, 1989. 249 с.
- 4. Турчак, Л. И. Основы численных методов: учеб. пособие / Л. И. Турчак, П. В. Плотников. 2-е изд., перераб. и доп. М.: Физматлит, 2003. 304 с.
- 5. Фаронов, В. В. Ф24 Турбо Паскаль 7.0. Начальный курс. Учебное пособие. М.: "Нолидж", 1997. 616 с.
- 6. Захаров, В. А. Численное решение двумерного уравнения теплопроводности для однородной шины методом конечных разностей / В. А. Захаров // Образование. Наука. Производство: Сборник докладов XVI Международного молодежного форума, Белгород, 30–31 октября 2024 года. Белгород: Белгородский государственный технологический университет им. В.Г. Шухова, 2024. С. 36–39. EDN CTHLZR.

## СТРОГО ХОПФОВЫ И КОХОПФОВЫ ПОЛИГОНЫ НАД ПОЛУГРУППАМИ

**Кожухов И.Б.,** д-р физ.-мат. наук, проф., **Колесникова К.А.** 

ФГАОУ ВО «Национальный исследовательский университет «Московский институт электронной техники», г. Москва, РФ kozhuhov i b@mail.ru, ksenya.koless@gmail.com

**Введение.** Условия конечности [1] универсальных алгебр — это условия, выполненные для всех конечных универсальных алгебр. В работе рассматривается одно из условий конечности — строгая кохопфовость — и получены необходимые и достаточные условия строгой кохопфовости полигонов некоторого вида.

Полигон — это алгебраическая модель автомата (без выхода), поэтому можно представлять полигон диаграммой Мура. Компоненты связности диаграммы будем также называть компонентами связности полигона. Говорят, что полигон X над полугруппой S является копроизведением полигонов  $\{X_i|i\in I\}$  (и пишут  $X=\coprod_{i\in I}X_i$ ), если полигоны множества  $\{X_i|i\in I\}$  попарно не пересекаются и  $X=\bigcup_{i\in I}X_i$ . Таким образом, любой полигон можно представить в виде копроизведения его компонент связности.

Пусть X — полигон над полугруппой S и  $X = \coprod_{i \in I} X_i$  — его представление в виде копроизведения компонент связности. В силу компоненты связности определения очевидно, что ДЛЯ эндоморфизма  $\alpha: X \to X$  верно, что для всякого  $i \in I$  найдётся  $j \in I$ , что  $X_i \alpha \subseteq X_i$ . Тогда для полигона X определим ориентированный граф  $\Phi =$ (I, U), который будем называть графом эндоморфизмов, следующим образом: дуга  $(i,j) \in U$ , если существует хотя бы один гомоморфизм  $X_i \to X_i$  $X_i$ . Простой цепью в графе будем называть цепь, в которой нет повторяющихся вершин, а длиной простой цепи будем называть количество дуг в ней. Также допускаем существование цепей длины нуль, состоящих из одной какой-либо вершины.

Пусть задано разбиение множества вершин графа  $\Phi$  на попарно непересекающиеся простые цепи (среди них допускаются цепи длины нуль). По этому разбиению можно построить эндоморфизм  $\varphi: X \to X$  следующим образом: если дуга (i.j) принадлежит какой-либо из цепей разбиения, то  $\varphi$  будет гомоморфно отображать компоненту  $X_i$  в компоненту  $X_j$  (хотя бы один способ это сделать существует по построению графа  $\Phi$ ). Если вершина i является последней вершиной цепи, то  $\varphi$  будет гомоморфно отображать компоненту  $X_i$  в себя (можно взять, например, тождественный автоморфизм). И наоборот, каждому эндоморфизму можно сопоставить разбиение графа  $\Phi$ .

**Строго хопфовы полигоны.** Полигон X над полугруппой S называется *строго хопфовым* [4], если, каким бы ни был эндоморфизм  $\varphi$ , найдётся натуральное число m такое, что ker  $\varphi^m = \ker \varphi^{m+1}$ .

Введём понятие *хопфовой длины* полигона X как точную верхнюю грань по всем эндоморфизмам  $\varphi$  этого полигона моментов стабилизации цепочек  $\ker \varphi \subseteq \ker \varphi^2 \subseteq \cdots$  (если цепочка не стабилизируется, будем считать момент стабилизации равным  $\infty$ ):

$$HL(X) = \sup_{\varphi \in End\ X} \{ \inf_{m} \ker \varphi^{m} = \ker \varphi^{m+1} \}.$$

Отметим, что  $HL(X) = \infty$  может быть, даже если полигон X строго хопфов.

В работе [5] была доказана

**Теорема 1.** Пусть X — полигон над полугруппой S,  $X = \coprod_{i \in I} X_i$  — его представление в виде копроизведения компонент связности и  $\Phi$  — граф эндоморфизмов полигона X. Полигон X строго хопфов тогда и только тогда, когда выполнены условия

- (i)  $X_i$  строго хопфов полигон для всякого  $i \in I$ ;
- (ii) множество  $J = \{i \in I | HL(X_i) = \infty\}$  конечно;
- (iii) существует натуральное число M такое, что для всех  $i \in I \setminus J$  выполнено  $HL(X_i) < M$ ;
- (iv) существует натуральное число K такое, что в графе  $\Phi$  длина любой простой цепи не превосходит K.

**Строго кохопфовы полигоны.** Полигон X над полугруппой S называется *строго кохопфовым* [4], если, каким бы ни был эндоморфизм  $\varphi$ , найдётся натуральное число m такое, что im  $\varphi^m = \text{im } \varphi^{m+1}$ .

**Теорема 2.** Пусть X — полигон над полугруппой S и  $X = \coprod_{i \in I} X_i$  — его представление в виде копроизведения компонент связности. Пусть при этом для любых индексов i, j все возможные гомоморфизмы  $X_i \to X_j$  сюръективны. Обозначим через  $\Phi$  граф эндоморфизмов полигона X. Тогда следующие условия равносильны:

- (v) X строго кохопфов полигон;
- (vi) Существует натуральное число K такое, что в графе  $\Phi$  длина любой простой цепи не превосходит K.

Отметим, что полигоны, у которых любой гомоморфизм между компонентами связности сюръективен, существуют. К таким полигонам относятся, например, все унитарные полигоны над группами [6], а также квазиунитарные полигоны над вполне простыми полугруппами [7].

Пусть G — группа, H — её подгруппа, необязательно нормальная, G/H — множество всех правых смежных классов. Очевидно, G/H является унитарным полигоном над группой G относительно действия  $Hg \cdot a = Hga$ . Этот полигон унитарный циклический. Хорошо известно, что произвольный унитарный полигон над группой G имеет вид  $\coprod_{i \in I} G/H_i$ .

Следствие 1. Унитарный полигон  $\coprod_{i \in I} G/H_i$  над группой G строго кохопфов в том и только том случае, если длины всех последовательностей  $H_{i_k} \subset a_1^{-1} H_{i_2} a_1 \subset \cdots \subset a_k^{-1} H_{i_k} a_k$  ограничены в совокупности (т.е. существует K, что длина любой такой последовательности не превышает K).

Аналогичное утверждение имеет место для квазиунитарных полигонов над вполне простой или вполне 0-простой полугруппой.

- 1. Кожухов, И. Б. Некоторые условия конечности в полигонах над полугруппами / И. Б. Кожухов, К. А. Колесникова // Материалы XIV Межд. семинара «Дискретная математика и её приложения». МГУ, 2022. С. 218–220.
- 2. Kilp M., Knauer U., Mikhalev A.V. Monoids, acts and categories: N.Y. Berlin, W. de Gruyter, 2000. xvii + 529 pp.
- 3. Кожухов, И. Б. Полигоны над полугруппами / И. Б. Кожухов, А.В. Михалёв // Фунд. и прикл. матем. -2020.-T.23.- Вып. 3.- С. 141-199.
- 4. Roueentan M., Khosravi R. On Hopfian(co-Hopfian) and Fitting S-acts (I). 2022. 10.48550/arXiv.2210.04970.
- 5. Kolesnikova K., Kozhukhov I. On the Strongly Hopfian Acts over Semigroups // Applied Mathematics. 2025. Vol. 16, №2. P. 183–189. doi: 10.4236/am.2025.162008
- 6. Максимовский, М. Ю. О полигонах над полурешётками / М. Ю. Максимовский // Фунд. и прикл. матем. -2008.-T. 14. Вып. 7. С. 151–156.
- 7. Кожухов, И. Б. Проективные и инъективные полигоны над вполне простыми полугруппами / И. Б. Кожухов, А. О. Петриков // Фунд. и прикл. матем. 2016. Т. 21, №1. С. 123–133.

# ПРИМЕНЕНИЕ НЕЧЕТКИХ ГРАФОВЫХ МОДЕЛЕЙ К ЗАДАЧЕ ЗАМЕНЫ ОБОРУДОВАНИЯ

Косенко Е.Е., ORCID 0009-0001-1236-8350, Бойко М.В., ORCID 0009-0001-7916-4213, Губанова А.А., ORCID 0009-0001-4204-8163,

**Косенко О.В.,** канд. техн. наук, доц., ORCID 0000-0001-5920-6343 ФГАОУ ВО «Южный федеральный университет», г. Таганрог, Ростовская обл., РФ kose@sfedu.ru, mboiko@sfedu.ru, agubano@sfedu.ru, ovkosenko@sfedu.ru

Введение. Проблема оптимизации сроков замены оборудования критически эффективного является важной ДЛЯ управления производственными активами. Классические подходы к её решению, методах динамического программирования, опираются на детерминированные показатели износа и стоимости. Однако условиях реальных ЭТИ параметры отличаются значительной неопределённостью, обусловленной изменчивостью рыночной конъюнктуры, темпов технологического развития и условий эксплуатации. Задача существенно усложняется при управлении многовидовым парком оборудования, где необходимо учитывать взаимосвязи и различное состояние единиц техники. В работе для решения данной проблемы в условиях неопределённости предлагается метод, использующий аппарат темпоральных нечётких графов.

**Цель** – разработка модели принятия решений о замене многовидового производственного оборудования в условиях неопределенности на основе аппарата темпоральных нечетких графов.

**Основная часть.** Моделирование состояния производственной системы, особенно в рамках определения оптимальных моментов обновления основных фондов, опирается на два ключевых временных фактора: хронологический возраст техники (t) и совокупную наработку, выраженную в единицах фактической эксплуатации (k). Именно временные характеристики выступают в качестве системообразующего элемента данного анализа. Согласно источнику [1], графовые сети зарекомендовали себя как эффективный и наглядный аппарат для моделирования полного жизненного цикла оборудования в рамках производственных операций.

Для учета временной динамики и трансформации системы предлагается использовать аппарат темпоральных графов. Применительно к проблеме оптимизации замены оборудования, формализация такой графовой структуры может быть представлена в следующем виде [2]:

$$G = (S_k^t, \{X_k\}, T),$$

где  $S_k^t$  – является множеством вершин графа,  $t = \{1,2,\ldots,T\}$  – дискретные моменты времени,  $\{X_k\}$  – семейство соответствий, которые отображают вершины  $S_k^t$  в моменты времени  $t = \overline{1,T}$ . Поскольку в задаче фигурируют два временных параметра (t- возраст оборудования, k- время эксплуатации данного оборудования), ключевым считается момент k, когда принимается решение о замене или дальнейшем использовании оборудования.

В работе [3] предложен математический аппарат, который позволяет объединить графовую модель задачи, временные отрезки и нечёткие исходные данные. Темпоральный нечеткий граф  $G = (S_k^t, \{X_k\}, T)$  будет определен как нечеткий ориентированный граф  $\tilde{G} = (S_k^t, \tilde{U}_t)$ , в котором множество  $\tilde{U}_t = \{\mu_t(s_i, s_j)\}$  – нечеткое множество ориентированных ребер в моменты  $t = \overline{1, T}$ , а  $\mu_t$  – есть функция принадлежности, определяющая степень износа оборудования в момент времени t (рисунок 1).

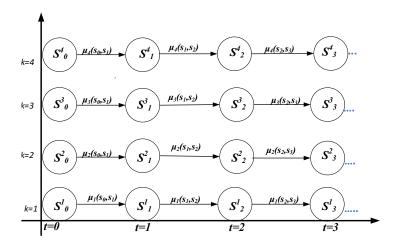



Рис. 1. Схема замены оборудования в серийном производстве

Важно, что в векторе управления присутствует параметр возраста устанавливаемого оборудования (не обязательно нового), что усложняет модель. Однако в нечёткой постановке параметр возраста становится избыточным, так как его можно учесть через функцию принадлежности  $\mu_t(s_i,s_j)$ . Таким образом, задача с двумя временными показателями сводится к анализу «реперных точек» — периодов, когда состояние оборудования оценивается на пригодность.

Результатом оптимизации становится сформированный для каждого контрольного интервала план технического обслуживания, определяющий эксплуатационную стратегию в соответствии с графиком (см. рис. 1):

- в момент времени t=1:  $\mu_1(s_0,s_1)$ ,  $\mu_2(s_0,s_1)$ ,  $\mu_3(s_0,s_1)$ ,  $\mu_4(s_0,s_1)$ ;
- в момент времени t=2:  $\mu_1(s_1,s_2), \mu_2(s_1,s_2), \mu_3(s_1,s_2), \mu_4(s_1,s_2)$ ;
- в момент времени t=3:  $\mu_1(s_2,s_3)$ ,  $\mu_2(s_2,s_3)$ ,  $\mu_3(s_2,s_3)$ ,  $\mu_4(s_2,s_3)$ ;

$$S_k^t = egin{cases} \mu_tig(s_i,s_jig) < \delta, & ext{ если } X^k = X^c \ \mu_tig(s_i,s_jig) \geq \delta, & ext{ если } X^k = X^z \end{cases} \quad k = 1,2,\dots,n.$$

где  $\delta$  — пороговое значение степени износа;  $X^c$  — решение сохранить оборудование;  $X^z$  — решение заменить оборудование.

В зависимости от пороговых значений степени износа могут быть выданы рекомендации по каждому периоду контроля о необходимости замены оборудования либо его сохранении. В табличной форме с тестовыми значениями задача будет определена следующим образом:

| Оборуд<br>ование | t=1   | Решение   | t=2   | Решение   | t=3   | Решение   |
|------------------|-------|-----------|-------|-----------|-------|-----------|
| 1                | μ=0.1 | Сохранить | μ=0.2 | Сохранить | μ=0.6 | Заменить  |
| 2                | μ=0.2 | Сохранить | μ=0.4 | Сохранить | μ=0.4 | Сохранить |
| 3                | μ=0.1 | Сохранить | μ=0.1 | Сохранить | μ=0.4 | Сохранить |
| 4                | μ=0.7 | Заменить  | μ=0.9 | Заменить  | μ=0.2 | Сохранить |

При  $\delta$ =0,6 оборудование первого вида необходимо заменить после третьего периода работы, а оборудование четвертого вида необходимо заменить после первого и второго периодов работы.

Заключение. Предложенная модель на основе темпоральных нечетких графов позволяет преодолеть ограничения классических подходов к задаче замены оборудования. Она учитывает не только хронологический возраст, но и фактический износ, выраженный через функцию принадлежности, а также возможность интеграции в производственную систему объектов с различным остаточным ресурсом. Модель является эффективным инструментом для формирования стратегии технического обслуживания и обновления многовидового парка оборудования в условиях нечеткости исходных данных.

- 1. Абрамова, И. Г. Управление проектом на основе сетевых моделей: метод. указания / И. Г. Абрамова. Самара: Самар. гос. аэрокосм. ун-т, 2007. 58 с.
- Bozhenyuk, A. V. Strong Connectivity Definition of Periodic Fuzzy Graph / A. V. Bozhenyuk, M. V. Knyazeva, O. V. Kosenko, I. N. Rozenberg // Intelligent and Fuzzy Systems. Intelligence and Sustainable Future: Proceedings of the INFUS 2023 Conference.

   Cham: Springer Nature Switzerland AG, 2023. P. 168–174. DOI 10.1007/978-3-031-39774-5
- 3. Боженюк, А. В. Использование периодических нечетких графов в задачах управления производственным оборудованием / А. В. Боженюк, М. В. Князева, О. В. Косенко, Е. Е. Косенко // Известия ЮФУ. Технические науки. 2023. № 5 (235). С. 119–126. DOI 10.18522/2311-3103-2023-5-119-126.

# ВЫЗОВЫ КЛАССИЧЕСКОЙ ЦИФРОВОЙ КРИПТОГРАФИИ В УСЛОВИЯХ СТАНОВЛЕНИЯ КВАНТОВЫХ ВЫЧИСЛИТЕЛЬНЫХ СИСТЕМ

**Куренков П.В.,** д-р экон. наук, проф., ORCID 0000-0003-0994-8546, **Филипченко А.С.,** ORCID 0000-0001-8684-6469 ФГАОУ ВО «Российский университет транспорта», г. Москва, РФ *petrkurenkov@mail.ru, filipchenkoas@riseup.net* 

Введение. В настоящее время внедрение новых технологий производства микропроцессоров связано с рядом финансовых проблем. Это заставляет искать новые альтернативные пути построения будущих ЭВМ, одним из наиболее перспективных считается разработка квантовых компьютеров. Однако квантовые компьютеры в определенный момент смогут решать задачи, для выполнения которых ни один классический компьютер не мог уложиться в разумное время. Таким образом, проблема «квантового превосходства» захватывает почти всю современную систему шифрования данных и требует решения связанных с этим задач.

**Целью** статьи является исследование новых вызовов цифровой криптографии, связанных с развитием квантовых вычислительных систем, поиск новых решений проблемы «квантового превосходства», анализ мирового актуального опыта в данной области.

**Основная часть.** Под криптографией понимается наука о методах преобразования информации для её защиты при передаче по незащищённым каналам связи и о способах практической реализации этих методов. Классическая цифровая криптография основана на односторонних функциях. Односторонней функцией считается такая функция f(x), что по известному x довольно просто найти значение f(x), тогда как определение x из f(x) невозможно за разумный срок [1]. Например, задача факторизации

Однако ДЛЯ квантовой вычислительной системы, распараллеливанию по кубитам, эта задача является вполне решаемой за конечное время. Так уже разработан и апробирован алгоритм Шора [2], который решает данную задачу на квантовом компьютере полиномиальное время  $O(\log^3 M)$ . Что, соответственно, позволяет расшифровать всю информацию, зашифрованную классической цифровой криптографией, за конечное время.

В связи с этим правительство США уже заявило о переходе на квантово-устойчивые алгоритмы для систем национальной безопасности к 2027 году. В рамках данного перехода появится требование к квантово-устойчивой подписи кода, в том числе для ряда печатающих устройств [3].

В России действует предварительный национальный стандарт Российской Федерации ПНСТ 799-2022 «Информационные технологии. Криптографическая защита информации. Термины и определения» [4]. Согласно данному стандарту постквантовая криптография представляет Раздел криптографии, связанный с оценкой способности криптографических систем противостоять атакам с применением квантовых компьютеров, а также синтезом криптографических систем, устойчивых к таким атакам.

В 2024 году уже стандартизированы три алгоритма постквантового шифрования: «CRYSTALS-Kyber», «CRYSTALS-Dilithium» и «Sphincs+». Детали алгоритмов описываются в стандартах «FIPS 203», «FIPS 204» и «FIPS 205» соответственно [5]. А открытые программные платформы на базе дистрибутивов операционной системы «GNU/Linux» смогут поддерживать постквантовую криптографию через утилиту «GNU Privacy Guard». Расширение с постквантовым алгоритмом публичного ключа для протокола «OpenPGP» описывается в проекте инженерного совета Интернета «Post-Quantum Cryptography in OpenPGP» от 17 июня 2025 [6].

Заключение. Развитие квантовых вычислительных систем ставит ряд вызовов классической цифровой криптографии. Требуется комплексная модернизация аппаратной и программной инфраструктуры, которая бы поддерживала алгоритмы постквантового шифрования. Для научного сопровождения перехода необходима организация данного исследовательских лабораторий на цифровых кафедрах квантовых российских университетов.

- 1. Введение в криптографию / Под общ. ред. В. В. Ященко. 4-е изд., доп. М.: МЦНМО,  $2012.-348~\mathrm{c}.$
- 2. Ключарев, П. Г. Основы квантовых вычислений и квантовой криптографии / П. Г. Ключарев // Вестник Московского государственного технического университета им. Н.Э. Баумана. Серия Приборостроение. 2006. № 2(63). С. 36–46. EDN HTXJIN.
- 3. HP Launches World's First Business Printers to Protect Against Quantum Computer Attacks. Текст: электронный / Matt Swayne // The Quantum Insider 2025. URL: https://thequantuminsider.com/2025/03/18/hp-launches-worlds-first-business-printers-to-protect-against-quantum-computer-attacks (дата обращения: 26.09.2025).
- 4. ПНСТ 799-2022. Информационные технологии. Криптографическая защита информации. Термины и определения. М., 2022. 50 с. (ФГБУ «Институт стандартизации»).
- 5. Панасенко, С. П. О применимости постквантового стандарта электронной подписи SLH-DSA в смарт-картах / С. П. Панасенко // Вопросы кибербезопасности. 2025. № 3(67). С. 29—37. DOI 10.21681/2311-3456-2025-3-29-37. EDN KJGROV.
- 6. Post-Quantum Cryptography in OpenPGP. Текст: электронный // IETF 2025. URL: https://datatracker.ietf.org/doc/draft-ietf-openpgp-pqc (дата обращения: 26.09.2025).

# МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ИНФОРМАЦИОННЫХ ПРОЦЕССОВ В СЛОЖНЫХ СИСТЕМАХ

**Ленников Р.В.,** ORCID 0009-0005-3013-6309

ФГБОУ ВО «Тульский государственный университет», г. Тула, РФ roman.lennikov@yandex.ru

**Введение.** Информационные процессы, происходящие в современных сложных системах, оказывают непосредственно влияние на динамику таких систем, часто являясь основной причиной резких изменений. Ключевой является зада поиска моделей, которые бы описывали современные процессы в сложных системах.

Цель настоящей работы предложить подходы и модели для понимания, процессов происходящих сложных системах социального и экономического типа. Все эти системы можно рассматривать как системы с явно выраженной информационной составляющей, которая определяет поведение системы. Такие системы обладают сложной структурой, состоящей из множества взаимодействующих элементов, обладающих коллективными свойствами, которые не могут быть сведены к простой сумме свойств отдельных компонентов. Помимо физических характеристик, каждый элемент системы информационными свойствами \_ памятью, наличием отсутствием информации, а связи между элементами предполагают передачу и обмен информацией, в процессе передачи возможны ошибки и ошибочная интерпретация. Все это в совокупности оказывает влияние на принятие решений каждым элементом системы. Например, в социальных сетях информация передается между пользователями, коммуникационные процессы, а на экономических рынках данные о ценах и характеристиках товаров определяют поведение участников.

Основная часть. Информационные аспекты сложных систем играют ключевую роль в их анализе и моделировании, поскольку такие системы существенно зависят от передачи и обработки информации. Оценка уровня организации информации в системе позволяет определить текущую стадию ее эволюции. Процессы, подчиняющиеся вероятностным закономерностям, занимают доминирующее положение в динамике подобных систем. В современном подходе к моделированию экономических и социальных систем особое внимание уделяется таким фундаментальным понятиям, как энтропия и информация.

Понятие информации неразрывно связано с концепцией энтропии. Формирование системы представляет собой процесс, при котором создаются внутренние связи, а составляющие элементы переходят в

организованное состояние. В то же время увеличение энтропии свидетельствует о процессе деградации и распада системы.

Формирование информационного решения системой можно рассматривать как процесс фазового перехода. В некоторый момент времени система подвергается информационному воздействию через инновацию.

Социально-экономические явления имеют в своей основе степенные распределения [4], случайная величина x,  $x = t - t_0$  (инертность) также имеет степенное распределение. Выражение для плотности распределения величины x имеет вид:

$$p(x) = \frac{a}{x^{1+\alpha}}$$
.

Параметр  $\alpha$  для социально-экономических явлений принимает значения  $0 \le \alpha \le 2$ , наиболее типичное значение  $\alpha = 1$ , соответствующее закону Ципфа

$$p(x) = \frac{a}{x^2}$$
.

Выражение описывает фазовый переход в системе после инновации. При  $x \to 0$  скорость перехода в новое состояние должна бесконечно возрастать, на практике это не осуществимо ввиду ограниченности ресурса, обеспечивающего инновационный переход. Сверху скорость перехода ограничена величиной a/r, где r — внутреннее сопротивление, сопряженное с ограниченностью доступного ресурса. Модифицируя закон Ципфа, делая поправку на наличии в системе внутреннего сопротивления:

$$p(x) = \frac{a}{r + x^2}.$$

После замены  $x=t-t_0$ ,  $r=\lambda^2$  и  $a=\lambda/r$ , получим выражения для функции плотности распределения

$$f(t) = \frac{\lambda}{\pi \left(\lambda^2 + \left(t - t_0\right)^2\right)}$$

и функции распределения

$$F(t) = \frac{1}{2} + \frac{1}{\pi} arctg \frac{t - t_0}{\lambda}.$$

Полученная плотность распределения имеет физический смысл скорости перехода системы к генерации новой фазы. Выражение может быть использовано для моделирования фазового перехода в результате инновационного воздействия и определения стадии эволюции, на котором находится система. Здесь и далее надо подчернить, что в системе происходит параллельно множество процессов, каждый может быть описан отдельно. Приведенные выше рассуждения применимы к конкретному процессу.

Характер поведения предложенной функция совпадает с поведением решения широко используемого логистического уравнения, но не повторяет его. Введем обобщенное логистическое уравнение в виде:

$$\frac{du}{dt} = ku^{\beta} \left(1 - u\right)^{\beta}.$$

Степень  $\beta$  определяет характер описываемого явления. При  $\beta = 2$  уравнение описывает процессы, имеющие ярко выраженный информационный характер.

Решение дифференциального уравнения при  $\beta = 2$  повторяет вид функции распределения описывающий фазовый переход в такой системе. Для моделирования информационно-зависимых систем предлагается использовать не классическое логистическое уравнение, а его обобщенный вид с показателем  $\beta = 2$ , предложенный выше.

Заключение. Существующие методы и подходы не всегда способны адекватно описывать сложные структуры и динамику систем, в тоже время обобщение имеющихся моделей позволяет по-новому посмотреть на изучение сложных информационно зависимых систем. Это подчеркивает необходимость разработки обобщённых подходов, основанных на современных информационных метриках. В настоящей работе показан один из вариантов обобщения имеющихся моделей к анализу явлений в сложных социальных и экономических системах.

- 1. Башкиров, А. Г. Энтропия Реньи как статистическая энтропия для сложных систем / А. Г. Башкиров // Теоретическая и математическая физика. 2006. Т.149, № 2. С. 299—317.
- 2. Ленников, Р. В. Энтропийные модели идентификации информационной составляющей в сложных сетевых системах / Р. В. Ленников // Электронное периодическое издание «Наукосфера». Смоленск, 2023. № 4 (2). Режим доступа: http://nauko-sfera.ru (дата обращения: 01.05.2023 г.).
- 3. Ленников, Р. В. Математическая модель фазовых переходов в сложных информационно определенных системах / Р. В. Ленников // Научный аспект. -2020. № 2. С. 2070–2075.
- 4. Хайтун, С. Д. Мои идеи / С. Д. Хайтун. М.: Агар, 1998. 240 с.

# ПРОЕКТИРОВАНИЕ РАСПРЕДЕЛЕННОЙ СИСТЕМЫ УПРАВЛЕНИЯ ДАННЫМИ С ИСПОЛЬЗОВАНИЕМ ПАТТЕРНА CQRS ДЛЯ ИЗБИРАТЕЛЬНОГО РАЗГРАНИЧЕНИЯ ДОСТУПА

 $\it Mакаренко \it U.Д.^1$ , ORCID 0009-0009-3797-1920,  $\it Πлатонов \it HO.\Gamma.^2$ , канд. техн. наук, ORCID 0009-0003-0959-7499,  $\it Mapuyk \it A.\Gamma.^{1,2}$ , д-р физ.-мат. наук, проф., ORCID 0000-0001-8374-7676  $^1\Phi\Gamma$ АОУ ВО «Новосибирский национальный исследовательский государственный университет», г. Новосибирск, РФ  $^2\Phi\Gamma$ БУН «Институт систем информатики им. А.П. Ершова Сибирского отделения Российской академии наук», г. Новосибирск, РФ  $\it i.makarenkol@g.nsu.ru$ 

Введение. В современных бизнес-задачах часто встречается ситуация, когда в создании и эксплуатации информационных систем участвуют несколько компаний, включая потенциальных конкурентов. В таких условиях на компании-агрегаторе, которая управляет системой, лежит основная ответственность за безопасность данных и за управление доступом к ним. В настоящее время классическими решениями для проектирования распределенных систем управления данными являются такие подходы, как репликация данных и создание систем сервисов на основе мультисервисной архитектуры. Но для обеспечения защиты данных от несанкционированного доступа ни первое ни второе решение не можем быть применимо в чистом виде.

**Цель** работы — построение модели распределенной системы, в которой оператор системы должен иметь быстрый доступ как к защищенной части данных, так и к публичной. Причем защищенная часть данных не должна иметь коммуникации с другими частями системы. При этом система должна обеспечивать обработку больших потоков данных.

часть. Классические Основная подходы построению распределенных систем, такие как репликация и шардирование данных [0], микросервисная архитектура [0], без модификаций не обеспечивают достаточного уровня безопасности и эффективности при работе с конфиденциальными данными и большими файлами. Одним из возможных решений указанных проблем, является использование паттерна CQRS [0] с особенностями, описываемыми далее. Представленная на Рис. 1 система реализует модель централизованного взаимодействия пользователей с распределёнными данными различных компаний через единый интерфейс. Ключевой особенностью архитектуры является использование специализированных АРІ-серверов, каждый из которых предоставляет стандартизированный доступ к данным соответствующей компании, сохраняя при этом их автономность и безопасность.

В предлагаемой архитектуре информационной системы центральным элементом является единый Web-сервер, выполняющий роль точки входа и «мостового» узла для всех коммуникаций внутри системы. Все поступающие запросы, сначала обрабатываются на уровне Web-сервера. Здесь осуществляется авторизация, балансировка нагрузки, логирование истории запросов, предварительная маршрутизация, и направление запросов на соответствующие API-серверы.

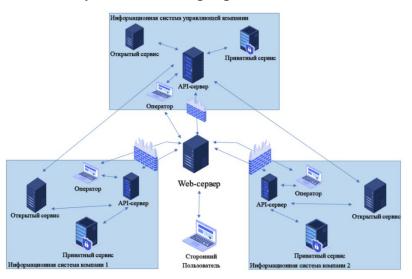



Рис. 1. Схема системы

Взаимодействие начинается с того, что пользователи через вебинтерфейс направляют запросы к общему веб-серверу системы. Этот сервер выполняет функции маршрутизатора, перенаправляя запросы на соответствующие API-серверы компаний в зависимости от требуемого источника данных. Важно отметить, что все API-серверы в системе выполняют идентичные функции - они обеспечивают стандартизированный доступ к данным своих компаний, выступая в роли унифицированных шлюзов. При этом каждый API-сервер работает исключительно с базой данных своей компании, что гарантирует изоляцию данных и соблюдение требований к их конфиденциальности. Такая организация позволяет компаниям сохранять полный контроль над своими данными, одновременно предоставляя их для работы в рамках общей системы.

На представленной UML-диаграмме (Рис. 2) изображена временная модель обработки запроса оператора во времени в разработанной системе. Когда веб-сервер получает запрос от клиента, он инициирует широковещательную рассылку этого запроса всем доступным API-серверам. Каждый API-сервер, приняв запрос, начинает асинхронную обработку и формирует ответ независимо от других узлов системы. После того как веб-сервер асинхронно собирает ответы от всех API-серверов, участвующих в обработке широковещательного запроса, он агрегирует полученные данные и отправляет клиенту единый результирующий ответ.

В некоторых случаях, однако, запрос может быть направлен конкретному серверу — например, при сохранении данных компании, которые должны обрабатываться определенным узлом в соответствии с заданными правилами маршрутизации. В такой ситуации веб-сервер передает запрос только выбранному API-серверу, минуя широковещательную рассылку. Полученный ответ затем напрямую отправляется клиенту без необходимости агрегации.

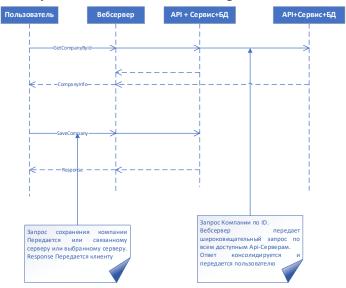



Рис. 2. Временная диаграмма обработки запроса

Заключение. В рамках данной работы предложена распределенной системы управления данными, основанная на паттерне CQRS, которая обеспечивает операторам дифференцированный доступ к зашишенным И публичным данным при сохранении информации. обработки потоков производительности крупных Архитектура системы сочетает централизованное управление запросами с распределенным хранением данных, что позволяет компаниям сохранять контроль над конфиденциальными сведениями.

**Информация о финансовой поддержке:** Исследование проводилось на площадке и при финансовой поддержке ООО «ИК ЦТО» (г. Новосибирск).

- 1. Fowler, Martin CQRS. // [электроннаяверсия] // https://martinfowler.com/bliki/CQRS.html// Дата обращения: 25/08/2025.
- 2. Pautasso, Cesare (2017). "Microservices in Practice, Part 2: Service Integration and Sustainability". IEEE Software. 34 (2): 97– 104. doi:10.1109/MS.2017.56. S2CID 30256045.// Дата обращения: 6/09/2025.
- 3. Meyer, Bertrand Object-Oriented Software Construction / B. Meyer. 2nd ed. Upper Saddle River, NJ: Prentice Hall, 1997.

### ОБ ОДНОМ ПРИМЕРЕ ИСПОЛЬЗОВАНИЯ СТАТИСТИЧЕСКИХ МЕТОДОВ АНАЛИЗА ДАННЫХ

### Малышев Ф.К.,

**Золотая А.В.,** канд. физ.-мат. наук, ORCID 0009-0003-4529-644X ФГБОУ ВО «Донецкий государственный университет», г. Донецк, РФ *a.zolotaya.tuvm@mail.ru* 

**Введение.** В современном цифровом мире данные больших объёмов являются важнейшим ресурсом, а системы управления базами данных служат основным инструментом для их хранения, обработки и извлечения полезной информации. С развитием технологий управления значительно возрастает необходимость использования эффективных методов анализа для глубокого понимания содержимого данных и принятия обоснованных решений. Статистический анализ имеет в арсенале такие методы и становится всё более востребованным.

**Целью** данной работы является описание практического примера исследования с использованием демонстрационной базы данных «Авиаперевозки» [2].

Для извлечения данных была использована система управления базами данных (СУБД) PostgreSQL, а для реализации статистических методов – язык программирования Python.

Исследование проводилось по следующему плану:

#### **І** этап

- 1. Выполнено вычисление задержек рейсов в минутах. Результаты запроса о задержках сохранены в CSV файл для дальнейшей работы с ними в среде Python.
- 2. Выполнена проверка генеральной совокупности на нормальность с использованием критериев Колмогорова-Смирнова и Шапиро-Уилка. Для нашего примера оба критерия показали, что генеральная совокупность имеет распределение, отличное от нормального.
- 3. В связи с результатом пункта 2, найдены описательные статистики: медиана, 25-й и 75-й процентили, межквартильный размах, минимум и максимум.

В результате выполнения программы получено среднее время задержки 6 минут с разбросом в 5 минут, максимальное время задержки составило 610 минут (приблизительно 10 часов).

#### II этап

1. Для нахождения дистанции между аэропортами, были подключены модули cube и earthdistance, которые необходимы для работы с географическими координатами [1].

- 2. Выполнен запрос, результатом которого были получены цена и дистанция полёта для каждого рейса.
- 3. При помощи Python найдены коэффициенты корреляции Спирмена и Кендалла (выбор коэффициентов обусловлен наличием выбросов).
- В результате выполнения программы коэффициент корреляции Спирмена оказался равным при округлении 0,84, коэффициент корреляции Кендалла 0,7, т.е. сделан вывод о том, что теснота связи между ценой билета и дистанцией полета сильная и положительная.

### III этап

- 1. На основе результатов, полученных на предыдущем этапе, построена линейная модель регрессии между ценой билета и дальностью полёта.
  - 2. Найдены среднеквадратическая ошибка и коэффициент детерминации. При помощи Python получены уравнение вида

$$y = 0.0066x + 2827.5169$$
,

среднеквадратичная ошибка 20398521, коэффициент детерминации 0,6, что свидетельствует о приемлемости объясняющей силы, но указывает на необходимость дальнейшего изучения других факторов/переменных, которые могут влиять на зависимую переменную.

### IV этап

- 1. Рассмотрен вопрос построения множественной линейной регрессионной модели. В качестве второго фактора, который может влиять на цену билета помимо дальности полёта, выбирается класс обслуживания.
- 2. Для получения необходимых данных выполнен соответствующий запрос.
- 3. На основе полученных данных построена линейная модель регрессии с двумя переменными.
  - 4. Найдены среднеквадратическая ошибка и коэффициент детерминации. При помощи Python получены уравнение вида

$$y = 0.0065x_1 + 22457.3032x_2 - 22322.4671,$$

среднеквадратичная ошибка 128910298, коэффициент детерминации 0,75, что свидетельствует о том, что модель имеет хорошую объясняющую силу и может быть использована для прогнозирования.

Заключение. Использование статистического анализа в СУБД открывает новые возможности для бизнеса и научных исследований. Его методы позволяют не только выявлять закономерности в данных, но и прогнозировать тренды, что способствует повышению эффективности работы предприятий и организаций.

- 1. Дюбуа, П. MySQL. Сборник рецептов / П. Дюбуа. Пер. с англ. СПб: Символ-Плюс, 2006. 1056 с. ISBN 5-93286-070-7.
- 2. Демонстрационная база данных [Электронный ресурс]. 2025. URL: https://postgrespro.ru/education/demodb (дата обращения: 07.02.2025).

# ПРОГРАММНАЯ РЕАЛИЗАЦИЯ МОДУЛЯ РАСЧЕТА СКОРОСТЕЙ ПАРА И СВОЙСТВ ЖИДКОСТИ ДЛЯ ВЕРХНЕЙ И НИЖНЕЙ СЕКЦИЙ РЕКТИФИКАЦИОННОЙ КОЛОННЫ

### Мельников $И.Д.^{1}$ ,

**Ананченко И.В.** 1,2,3, канд. техн. наук, доц.

<sup>1</sup>ΦΓБОУ ВО «Санкт-Петербургский государственный технологический институт (технический университет)», г. Санкт-Петербург, РФ <sup>2</sup>ΦГБОУ ВО «Балтийский государственный технический университет «ВОЕНМЕХ» им. Д. Ф. Устинова», г. Санкт-Петербург, РФ <sup>3</sup> ФГАОУ ВО «Национальный исследовательский университет ИТМО», г. Санкт-Петербург, РФ *chghmelnikoff@yandex.ru, anantchenko@yandex.ru* 

**Введение.** Актуальность разработки специализированного программного обеспечения для химической технологии напрямую связана с необходимостью автоматизации сложных расчетов при проектировании ректификационных колонн. Ключевой задачей является точное определение гидродинамических параметров, которые существенно различаются в верхней и нижней секциях аппарата и непосредственно влияют на его эффективность. Разработанный модуль позволяет рассчитывать скорости пара и физикохимические свойства жидкости раздельно для каждой секции колонны.

Основная часть. Для расчета скоростей пара служат диаметры верха (de) и низа (dh) колонны, усредненный диаметр (D), а также параметры тарелки: свободное (Fc), рабочее (Sm) и относительное сечение перелива (Snep). Математический алгоритм включает три последовательных этапа. Сначала определяется уточненная скорость пара в колонне (w ув, w ун) на основе принятой константы скорости и рассчитанных диаметров. Затем вычисляется скорость газа в отверстиях (w ів, w ін) с учетом свободного сечения тарелки. Ключевым этапом является расчет скорости пара в рабочем сечении (w тв, w тн), учитывающий реальную площадь для потока. Особенностью прохождения парового алгоритма является параллельное проведение вычислений для обеих секций обусловленное различными физическими условиями в них [1].

Расчет свойств жидкости требует учета температурной зависимости и состава бинарной смеси. Исходными данными служат средние мольные составы жидкости ( $x\_cp.s$ ,  $x\_cp.h$ ) и справочные температуры ( $t\_xs$ ,  $t\_xh$ ), получаемые из базы данных. Для определения вязкости ( $\mu$ ) применяются экспоненциальные зависимости для индивидуальных компонентов с последующим пересчетом для смеси по логарифмическому правилу смешения. Аналогично рассчитывается поверхностное натяжение ( $\sigma$ ж) через линейные температурные зависимости чистых компонентов и правило

аддитивности для смеси. Эти параметры критически важны, поскольку непосредственно влияют на гидродинамику парожидкостного слоя и эффективность массообмена [2].

Интерфейс программы показан на рисунке 1 Среда разработки программы Delphi [3]. Для ввода исходных данных пользователь может сделать это вручную или воспользоваться кнопками: "Входные значения"  $\rightarrow$  "Заполнить согласно тестовому плану". Стоит подчеркнуть, что программа учитывает возможность ввода десятичных чисел как с точкой, так и с запятой.

| одные значения                                   |      |
|--------------------------------------------------|------|
| Заполнить согласно тестовому плану               |      |
| Исходные данные                                  |      |
| Выберите ж-ость-жидкость: ацетон-метиловый спирт | ~    |
| Производительность по дистиллятору Gd = 2160     | KI/t |
| Концентрация в исходной смеси $Xf = 0.42$        | %    |
| Концентрация в дистиляторе $Xd = 0.76$           | %    |
| Концентрация в кубовом остатке $Xw = 0.06$       | %    |
| Высота переливного порога $h = 0.03$             | М    |
| Расчитать                                        |      |

Рис. 1. Интерфейс для ввода исходных данных

Результат расчета параметров пара представлен на рисунке 2.

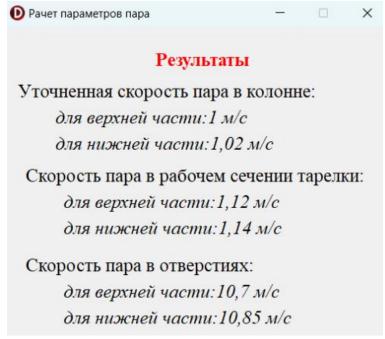



Рис. 2. Расчет параметров пара

Результат расчета параметров жидкости представлен на рисунке 3.

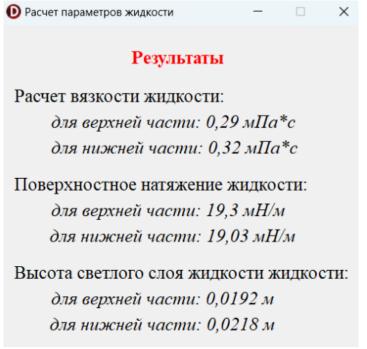



Рис. 3. Расчет параметров жидкости

Заключение. Таким образом, в рамках проекта был успешно разработан и интегрирован в общую структуру приложения программный автоматизирующий сложный расчет гидродинамических параметров ректификационной колонны. Перспективы развития программы включают: расширение базы данных для поддержки многокомпонентных смесей, внедрение функций оптимизации технологических параметров, разработку модуля моделирования динамического нестационарных интеграцию САПР-системами процессов, c ДЛЯ автоматического формирования конструкторской документации, а также создание вебверсии для обеспечения многопользовательского доступа и упрощения процесса обновления программного обеспечения. Реализация направлений позволит создать комплексный инструмент для сквозного проектирования ректификационных установок.

- 1. Волжинский, А. И. Ректификация: колонные аппараты с ситчатыми тарелками: Учебное пособие / А. И. Волжинский, В. Ф. Фролов, Ю. Г. Чесноков; СПбГТИ(ТУ). Каф. процессов и аппаратов. СПб.: [б. и.], 2009–68 с.: ил. -Библиогр.: с. 52–53.
- 2. Ананченко, И. В. Программный модуль для расчета диаметра ректификационной колонны с сетчатыми тарелками / И. В. Ананченко, А. Ю. Рогов, И. Д. Мельников // Современные студенческие исследования: Сборник статей VI Международной научно-практической конференции, Пенза, 20 июля 2025 года. Пенза: Наука и Просвещение (ИП Гуляев Г.Ю.), 2025. С. 88—92. EDN YEBFNE
- 3. Фаронов, В. Delphi. Программирование на языке высокого уровня / В. Фаронов. СПб.: Питер, 2012.-640 с.

## ИНТЕГРАЦИЯ ГРАФОВЫХ СТРУКТУР В ЭМБЕДДИНГИ ВЕКТОРНЫХ БАЗ ДАННЫХ ДЛЯ ПОВЫШЕНИЯ СЕМАНТИЧЕСКОГО ПОИСКА

**Настасенко С.А.**<sup>1</sup>, ORCID 0009-0001-0068-0128, **Савотченко С.Е.**<sup>1,2</sup>, д-р физ.-мат. наук, доц., ORCID 0000-0002-7158-9145  $^{1}\Phi$ ГБОУ ВО «Российский государственный университет им. Серго Орджоникидзе», г. Москва, РФ

<sup>2</sup>ФГБОУ ВО «МИРЭА – Российский технологический университет», г. Москва, РФ snastasenko99@gmail.com, savotchenkose@mgri.ru

**Введение.** Информационный поиск — это процесс извлечения релевантных данных из больших текстовых коллекций. В современных системах поиска выделяют два основных подхода: поиск, по ключевым словам, и семантический поиск.

Поиск, по ключевым словам, основан на точном совпадении слов в запросе. Семантический поиск помогает нам искать информацию не обязательно по точному значению слов. Благодаря нему, можно находить информацию по запросу сформулированного естественный языком (NLP – NatureLanguageProcessing).

Основная часть. Основу семантического поиска которые преобразуют нейросетевыемодели, текст В многомерные векторные представления (эмбеддинги). Эти модели обучали таким образом, чтобы похожие по смыслу эмбеддинги находились рядом друг с другом. Таким образом, это позволяет находить семантически близкие объекты даже без точного совпадения слов. Однако векторный поиск не учитывает логические связи внутри документа и более высокие уровни семантик, поэтому его целесообразно комбинировать с графовыми базами данных, которые моделируют семантические отношения между текстовыми фрагментами. Тем самым превращая эмбеддинги не просто в векторы в пространстве. Но и обогащая их дополнительными семантиками.

Семантический поиск работает не идеально. Модель все же не умеет мыслить, она может находить паттерны и аппроксимировать их. Среди ключевых проблем можно выделить следующие:

- 1) Близость из-за структуры предложений, а не смысла. К примеру, два следующих предложения модель может поместить близко друг к другу: «Я иду в магазин за хлебом» и «Он пошел в библиотеку за книгой».
- 2) Шумовые ассоциации. Алгоритмы могут находить связи между терминами, которые часто встречаются, но не имеют значимой логической или причинно-следственной связи. К примеру, в предложениях «купить

билет на поезд» и «купить билет в кино» модель может решить, что «поезд» и «кино» связаны.

- 3) Несбалансированность длины запроса и документов. Запросы обычно короче документов или чанков, поэтому эмбеддинг запроса может дать некорректное сравнение.
- 4) Проблема контекста. Семантический поиск хуже работает с многозначностью. Одно и то же слово в разных контекстах может означать разные вещи, но эмбеддинги не всегда это учитывают. К примеру, запрос «ключ от замка» может быть посчитать близким по смыслу как «в кармане лежал ключ от дома», так и «ключ к задаче оказался неожиданным».
- 5) Ограниченная интерпретируемость. Семантический поиск работает, как «черный ящик». Пользователь не понимает, почему именно эти результаты оказались ближе, и не может легко проверить корректность ответа.

Графовые базы данных позволяют решать эти проблемы, фиксируя логические и семантические связи между текстовыми фрагментами. В отличие от векторного поиска, где критерий – расстояние между точками в многомерном пространстве, графовая модель учитывает смысловые и причинно-следственные отношения.

Текстовый документ поступает в систему и разбивается на фрагменты (абзацы, предложения, классификация документа). Для каждого фрагмента выполняются два параллельных процесса: Векторизация текста и построение графа связей, между эмбеддингами. Сначала выполняется поиск по векторной базе для извлечения релевантных фрагментов. Затем результат сужается или расширяется, учитывая связи и контекст. Итогом является результат поиска, где выдача становится более точной и соответствует не только формальной близости эмбеддингов, но и смысловым связям внутри документа.

Дополнительно векторные представления можно обогащать различного рода семантикой. Одним из подходов является предварительная кластеризация документов, которая позволяет выделять группы текстов по тематикам или смысловым областям. Такая кластеризация может быть использована для персонализации выдачи: пользователю из одной категории (например, исследователю в области компьютерных наук) система будет предлагать одни документы, а пользователю из другой категории (например, специалисту в области биологии) — другие, даже если исходный запрос у них совпадает. Таким образом поиск становится не только точнее за счет учета внутренних связей в тексте, но и более контекстно-зависимым, адаптированным под конкретные потребности пользователей.

К примеру, если менеджер, бухгалтер и разработчик введут запрос «как забронировать переговорную комнату», то для менеджера система

выдает инструкцию по использованию корпоративного календаря, для бухгалтера — информацию о правилах учета аренды помещений, а для разработчика — техническую документацию по API бронированию. Что самостоятельно векторные базы данных не смогут это сделать.

Недостатки векторных баз данных могут быть устранены за счет интеграции с графовыми структурами. Ложные совпадения по ферме предложений и шумовые ассоциации исключаются за счет фиксирования логических связей между терминами. Несбалансированность длины запроса и документа компенсируется расширением запроса через графовые узлы, а проблема многозначности решается разведением разных смыслов одного слова в отдельные контекстные вершины. Дополнительно граф позволяет объяснять выбор результатов, делая поиск более прозрачным для пользователя.

Заключение. Комбинирование векторных и графовых баз данных позволяет учитывать семантические связи при поиске текстовой информации. Использование графовых структур для моделирования взаимосвязей между фрагментами текста улучшает качество поиска и снижмает количество нерелевантных результатов Разрабатанный метод может быть адаптирован под персонализированный поиск и анализ текстовых данных.

- 1. James Jie Pan, Jianguo Wang, Guoliang Li. "Survey of Vector Database Management Systems." arXiv preprint arXiv:2310.14021 (2023). https://arxiv.org/abs/2310.14021(дата обращения: 02.10.2025).
- 2. Toni Taipalus. "Vector Database Management Systems: Fundamental Concepts, Use-Cases, and Current Challenges." arXiv preprint arXiv:2309.11322 (2023). https://arxiv.org/abs/2309.11322(дата обращения: 02.10.2025).
- 3. Yikun Han, Chunjiang Liu, Pengfei Wang. "A Comprehensive Survey on Vector Database: Storage and Retrieval Techniques, Challenges." arXiv preprint arXiv:2310.11703 (2023). https://arxiv.org/abs/2310.11703(дата обращения: 02.10.2025).
- 4. Zhi Jing, YongyeSu, Yikun Han. "When Large Language Models Meet Vector Databases: A Survey." arXiv preprint arXiv:2402.01763 (2024). https://arxiv.org/abs/2402.01763(дата обращения: 02.10.2025).

### РЕАЛИЗАЦИЯ МНОГОСЛОЙНЫХ СРЕЗОВ В СИСТЕМЕ ОБРАБОТКИ СТАТИСТИЧЕСКОЙ ИНФОРМАЦИИ

**Неспирный В.Н.**, канд. физ.-мат. наук, ORCID 0000-0003-0209-9473, **Шеремет Н.Н.**, ORCID 0000-0001-7870-4137

ГБУ «Институт экономических исследований», г. Донецк, РФ itdep.econri@mail.ru

Статистическое наблюдение имеет важное значение в различных сферах человеческой деятельности и предполагает сбор и обработку данных в соответствии с разработанными методиками и установленными регламентами. Полученная таким образом информация может быть проанализирована и использована для принятия обоснованных решений, направленных на достижение определенного результата. Как правило, данные представляются в виде статистических показателей, привязанных к некоторым значениям параметров (дате, объекту наблюдения и др.).

Математически показатель может быть формализован как частично-определенное отображение  $I: P_1 \times P_2 \times ... \times P_k \to R$ , где  $P_i$  — множество допустимых значений i-го параметра показателя I, а R — множество действительных чисел. В базе данных информация о показателе хранится в виде таблицы, где каждое значение представляется отдельной записью с k+1 полем (первые k полей определяют значения параметров и формируют ключ, а последнее хранит численное значение показателя, соответствующего данному набору параметров).

При анализе, как правило, рассматривается не весь накопленный и сохраненный набор данных показателя целиком, поскольку он может быть достаточно объемным, а формируются срезы, позволяющие выделить важную для текущих задач информацию, на основе которых в дальнейшем строятся графические представления. В некоторых случаях конфигурация среза заранее известна и может быть прописана в форме запроса непосредственно в программном коде. Однако такие предзаданные срезы позволяют аналитику ответить лишь на определенные типовые вопросы в штатных ситуациях. В случае же возникновения непредвиденных ситуаций требуется возможность определения срезов пользователем.

Для формирования пользовательских срезов в информационных системах чаще всего используются механизмы фильтрации. Существуют разные классификации фильтров в зависимости от типа условий отбора данных. В данной работе используется следующая терминология:

1) элементарный фильтр — определяет ограничение на значения одного параметра; при этом фильтр может быть: пустым (равносильно отсутствию ограничений); одиночным (параметр должен иметь заданное фиксированное значение); множественным (значение параметра должно

входить в заданное множество); диапазонным (значение параметра должно быть включено в определенный диапазон значений для линейно упорядоченных множеств);

- 2) простой фильтр представляет собой набор из k элементарных фильтров, каждый из которых определяет ограничение на свой параметр; общее условие отбора такого фильтра определяется конъюнкцией ограничений, заданных входящими в него элементарными фильтрами;
- 3) расширенный фильтр состоит из произвольного количества элементарных фильтров, объединенных между собой произвольным наборов логических связок (конъюнкций, дизъюнкций и отрицаний).

Учитывая, что показатель в процессе функционирования системы может модифицироваться, мы разделяем понятия среза (как подмножества наборов параметров, удовлетворяющих ограничениям фильтра) и выборки значений показателя, которая может быть получена по этому срезу в конкретный момент времени. Преимущество расширенного фильтра заключается в том, что он позволяет задать срез показателя произвольной конфигурации, в то время как простые определяют только прямоугольные срезы. Под прямоугольным срезом понимается такое подмножество значений параметров  $C \subset P_1 \times P_2 \times ... \times P_k$ , что для него выполнено следующее свойство: если два разных набора  $(p_{1,1}, p_{2,1}, ..., p_{k,1})$  и  $(p_{12}, p_{22}, ..., p_{k,2})$  входят в срез C, то для любых  $(i1, i2, ..., ik) \in \{1,2\}^k$  набор параметров  $(p_{1,1}, p_{2,2}, ..., p_{k,ik})$  также входит в срез C.

Размерность показателя определим как количество определяющих его значения параметров (k), а размерность среза — как количество его нетривиальных проекций (состоящих более чем из одного значения) на отдельные координаты (параметры). Срез, соответствующий одиночному элементарному фильтру, имеет размерность k-1, а в общем случае сохраняется размерность k. Отсюда следует, что размерность среза простого фильтра равна разности размерности показателя (k) и количества одиночных элементарных фильтров, входящих в состав простого.

Несмотря на универсальность расширенных фильтров, они все же формирования недостаток, связанный co сложностью ИХ имеют пользователем. Один из вариантов предполагает задание их в виде строки, содержащей условное выражение в синтаксисе, который принят в программировании. Это требует от пользователя достаточно хорошей подготовки и опыта работы с подобными выражениями. Другой вариант – создание элементарных фильтров и последовательное связывание их с помощью логических операций в древовидную структуру – возможно менее требователен к навыкам пользователя, однако, как правило, приводит к более громоздкому для визуального восприятия интерфейсу [1, 2].

В разрабатываемой авторами информационно-аналитической системе анализа и прогноза экономики Донецкой Народной Республики был предложен и реализован подход, связанный с формированием

многослойных срезов. В этом случае срез состоит из нескольких слоев, каждый из которых определяется простым фильтром. Итоговый результат запроса будет состоять из тех записей показателя, которые входят хотя бы в один из слоев. Таким образом, элементарные фильтры внутри слоя соединяются конъюнкцией, а отдельные слои – дизъюнкцией.

 $\it Утверждение.$  Любой срез показателя  $\it I$  может быть получен с помощью некоторого многослойного фильтра.

Следует отметить, что в общем случае количество слоев для некоторого среза может быть достаточно большим (и превышать число элементарных фильтров, входящих в состав расширенного фильтра, определяющего тот же срез), однако в большинстве случаев, возникающих на практике, хватает 2–3 слоев.

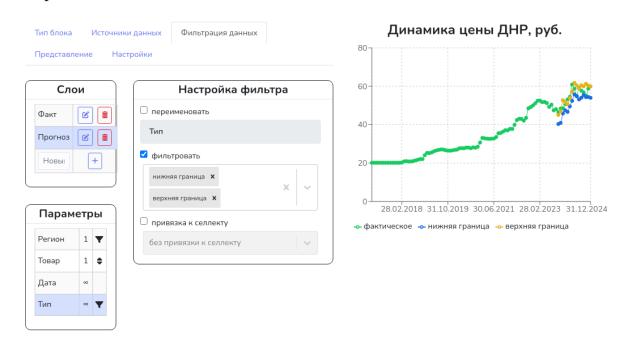



Рис. Пример создания многослойного фильтра

На рисунке показана форма создания многослойных фильтров в подсистеме аналитики ИАСАП. Здесь пользователь имеет возможность добавить, удалить и переименовать слой, а внутри каждого слоя — выбрав параметр, определить для него соответствующий элементарный фильтр.

**Информация о финансовой поддержке:** Исследования проведены в рамках выполнения гранта Российского научного фонда № 25-18-20606, https://rscf.ru/project/25-18-20606/.

- 1. Работа с расширенным фильтром Текст: электронный // Портал Polymatica Wiki: [сайт]. 2024. URL: https://wiki.polymatica.ru/pages/viewpage.action?pageId=513083183.
- 2. Тихонов Д. Фильтрация по динамическим атрибутам Текст: электронный // Хабр: [сайт] 2022. URL: https://habr.com/ru/articles/668350/

### ПОДГОТОВКА К СОБЕСЕДОВАНИЮ В ІТ-КОМПАНИЮ: КОМПЛЕКСНЫЙ ПОДХОД

Платонова E.C., ORCID 0009-0002-5706-856X, Рупенко H.C., ORCID 0009-0000-7469-1201

ФГБОУ ВО «Донецкий государственный университет», г. Донецк, РФ rupenko.nikita97@mail.ru elenasergeevna9@mail.ru

**Введение.** Современный рынок труда в сфере информационных технологий характеризуется высокой конкуренцией и динамичностью. Процесс найма в IT-компании часто включает несколько этапов, требующих от кандидата демонстрации не только технических знаний, но и soft skills. Эффективная подготовка к собеседованию становится критически важным фактором успеха. Целью данной работы является систематизация и представление комплексного подхода к подготовке, охватывающего все аспекты современного IT-собеседования.

**Основная часть.** Подготовку к собеседованию целесообразно разделить на несколько взаимосвязанных этапов: изучение компании и вакансии; глубокое исследование компании-работодателя, её продуктов, технологического стека, корпоративной культуры и последних новостей. Необходимо тщательно проанализировать описание вакансии, выделив ключевые требования (hard skills) и желательные качества (soft skills) [1]. Это позволит выстроить стратегию самопрезентации, акцентируя внимание на наиболее релевантных для работодателя компетенциях.

Техническая подготовка является центральной для IT-специалистов. Ее можно структурировать следующим образом:

- 1. Повторение теоретических основ. Необходимо освежить знания базовых концепций, соответствующих специализации (например, структуры данных, алгоритмы, паттерны проектирования, принципы ООП, SQL/NoSQL, сетевые протоколы) [2].
- 2. Решение практических задач. Регулярная практика решения алгоритмических задач на специализированных платформах (LeetCode, CodeWars, HackerRank) развивает алгоритмическое мышление и навык написания чистого кода под давлением времени.
- 3. Проектирование систем. Для опытных разработчиков ключевым является этап системного дизайна, где требуется продемонстрировать умение проектировать масштабируемые и отказоустойчивые системы [3].
- 4. Работа с кодом. Подготовка должна включать разбор и написание кода на основном языке программирования, включая анализ временной и пространственной сложности алгоритмов.

Подготовка по поведенческим вопросам и вопросам о проектах. Поведенческие интервью (Behavioral Interview) направлены на оценку soft

skills кандидата. Для подготовки следует использовать методику STAR (Ситуация — Задача — Действие — Результат), которая помогает структурировано и доказательно рассказать о своем профессиональном опыте [4]. Необходимо подготовить развернутые примеры из реальных проектов, иллюстрирующие навыки работы в команде, разрешения конфликтов, управления временем и принятия сложных решений. Особое внимание следует уделить последнему проекту в портфолио, чтобы иметь возможность детально рассказать о своем вкладе, использованных технологиях и принятых архитектурных решениях.

**Подготовка к собеседованию.** Непосредственно перед собеседованием необходимо: проверить и протестировать оборудование и связь для онлайн-формата; подготовить вопросы к интервьюеру о команде, продукте, процессах внутри компании; продумать свой внешний вид и выбрать подходящее место для интервью; постараться избежать волнения.

Типичные ошибки и рекомендации. К распространенным ошибкам кандидатов относятся: недостаточное знание собственного резюме и проектов; неумение аргументировать свой выбор технологий и решений; отсутствие вопросов к интервьюеру; пренебрежение нефункциональными требованиями (безопасность, масштабируемость) при проектировании. Для успешного прохождения собеседования рекомендуется: внимательно слушать вопросы и переспрашивать, если что-то непонятно; мыслить вслух, проговаривая ход своих размышлений; писать чистый и читаемый код с соблюдением code style; тестировать свое решение на примерах; честно говорить о том, что чего-то не знаете, но демонстрировать готовность и способность к обучению.

Заключение. Подготовка к собеседованию в ІТ-компанию — это комплексный и структурированный процесс, требующий времени и усилий. Системный подход, включающий техническую и поведенческую подготовку, глубокое изучение компании и вакансии, а также тщательное планирование самого интервью, значительно повышает шансы на успех. Ключевыми факторами являются практика решения задач, умение четко и структурированно излагать свои мысли и демонстрировать не только hard skills, но и высокий уровень soft skills.

- 1. Манн, И. Арифметика найма. Как найти лучшего сотрудника / И. Манн. М.: Манн, Иванов и Фербер, 2019. 234 с.
- 2. Макдауэлл, Г. Карьера программиста. Как устроиться на работу в Google, Microsoft или другую ведущую ІТ-компанию. 6-е изд. СПб.: Питер, 2021. 512 с.
- 3. Xu A. System Design Interview An insider's guide. Leanpub, 2020. 300 p.
- 4. Джаред, Т. Полное руководство по проведению собеседований при приеме на работу / Т. Джаред. М.: Баланс Бизнес Букс, 2018. 415 с.

### ПРИМЕНЕНИЕ Q-ФУНКЦИИ ДЛЯ ДИНАМИЧЕСКОГО УПРАВЛЕНИЯ КОНФИГУРАЦИЕЙ ЛОГИСТИЧЕСКИХ СЕТЕЙ

**Поликарпов Д.С.,** ORCID 0009-0005-8561-5219, **Косенко Е.Ю.,** канд. техн. наук, доц., ORCID 0000-0002-8836-927X ФГАОУ ВО «Южный федеральный университет», г. Таганрог, Ростовская обл., РФ *polikarpov@sfedu.ru, ekosenko@sfedu.ru* 

Введение. Задачи оптимального размещения центров материальноснабжения (ЦМТС) В динамических характеризуются высокой степенью неопределённости. Традиционные статические модели, не учитывающие временную изменчивость ключевых параметров, оказываются недостаточно эффективными для управления такими сложными системами, как транспортные сети [1, 2]. Особую актуальность приобретает разработка адаптивных методов в условиях стохастических изменений уровней риска, пропускной способности и объёмов потребления. В рамках данной работы для решения задачи покрытия транспортной сети предлагается основанный на использовании марковского процесса принятия решений (МППР). Ключевым инструментом для выбора оптимальных управляющих воздействий в данном подходе выступает Q-функция, позволяющая эффективность действий оценивать долгосрочную условиях В неопределённости.

Транспортная сеть формализуется Основная часть. взвешенного графа G = (V, E), где V представляет множество вершин, соответствующих узлам снабжения, а E — множество рёбер, отображающих связи. Каждая вершина  $v \in V$ характеризуется транспортные пространственными координатами  $(x_n, y_n)$ , динамическим уровнем риска  $r_v(t)$  и потребностью в ресурсах  $d_v(t)$ . Каждое ребро  $e=(v_i,v_i)\in E$  $\omega_e = \sqrt{\left(x_{v_i} - x_{v_i}\right)^2 + \left(y_{v_i} - y_{v_i}\right)^2}$ , риском нарушения весом функционирования  $r_e(t)$  и пропускной способностью  $c_e(t)$  [3].

Целью является нахождение такого множества размещаемых центров материально-технического снабжения (ЦМТС)  $K \subseteq V \cup V'$  (где V' — множество дополнительных точек пространства), которое минимизирует количество центров | K | при обеспечении максимального покрытия вершин на протяжении всего периода планирования  $t \in \{1,2,...,T\}$ . Достижение цели должно осуществляться при соблюдении системы ограничений, включающей максимально допустимый радиус покрытия R, пороговый уровень риска  $r_{max}$  на маршруте и условие достаточности пропускной способности рёбер для удовлетворения потребностей вершин.

Для учета динамики задача формулируется в терминах марковского процесса принятия решений [4, 5], задаваемого кортежем  $(S,A,P,R,\gamma)$ . Множество состояний системы S включает текущую дислокацию ЦМТС и значения всех динамических параметров сети. Множество действий A включает операции добавления, удаления и перемещения центров. Функция переходов P(s'|s,a) моделирует стохастическую динамику изменений параметров сети. Функция вознаграждения R(s,a) формируется как отрицательное количество ЦМТС, скорректированное на штрафные санкции за непокрытые вершины и нарушения наложенных ограничений. Коэффициент дисконтирования  $\gamma$  определяет значимость будущих состояний.

Целевая функция стратегии  $\pi$  заключается в максимизации ожидаемого дисконтированного вознаграждения и выражается как:

$$V^{\pi}(s_0) = E\left[\sum_{t=0}^{T} \gamma^t R(s_t, \pi(s_t))\right].$$

Для нахождения оптимальной стратегии определяется Q-функция, выражающая ожидаемое вознаграждение за выполнение действия a в состоянии s с последующим следованием стратегии  $\pi$ :

$$Q^{\pi}(s,a) = E[R(s,a) + \gamma \sum_{s'} P(s' \mid s,a) V^{\pi}(s')].$$

Оптимальная Q-функция  $Q^*(s,a)$  удовлетворяет уравнению Беллмана:

$$Q^*(s,a) = R(s,a) + \gamma \sum_{s'} P(s' \mid s,a) \max_{a'} Q^*(s',a')$$

Ввиду вычислительной сложности точного решения используется оценочный алгоритм, комбинирующий методы оптимизации на графах с процедурой оценки Q-функции методом Монте-Карло. На каждом временном шаге состояние системы  $s_t$  актуализируется, и формируется множество кандидатов для размещения ЦМТС с приоритетом на точки с низким уровнем риска и высокой доступностью. Для каждого кандидата k' с помощью алгоритма Дейкстры, учитывающего ограничения на длину, риск и пропускную способность, определяется множество покрываемых вершин  $V_{k'}$ .

Выбор оптимального действия a осуществляется на основе анализа Q-функции Q(s,a). Ввиду вычислительной сложности точного вычисления используется оценка Q-функции методом Монте-Карло с прогнозированием на несколько шагов вперед [6]. Для этого для каждого действия-кандидата запускается множество стохастических симуляций развития системы, и итоговое значение Q(s,a) вычисляется как среднее накопленное дисконтированное вознаграждение по всем симуляциям.

Для проверки эффективности предложенного подхода был проведен вычислительный эксперимент на смоделированных данных, моделирующих сеть из 30 узлов. Сравнение проводилось с базовым статическим алгоритмом, оптимизирующим размещение по средним значениям параметров. Эффективность оценивалась по двум ключевым метрикам: процент покрытия сети (доля вершин, для которых выполнены все ограничения) и количество используемых ЦМТС.

В сценарии с умеренными изменениями параметров оба алгоритма показали схожие результаты, обеспечивая покрытие около 95% сети, однако динамический алгоритм использовал в среднем на 5% меньше ЦМТС за счет более гибкого перераспределения.

В условиях экстремальных изменений с резкими возрастаниями рисков и "перекрытием" до 30% ребер динамический подход показал существенное преимущество, обеспечивая покрытие на уровне 85-90% против 60-70% у статического алгоритма. Это достигалось за счет адаптивного увеличения количества ЦМТС на 10-15% в критические моменты для замещения выбывающих элементов сети, что подтверждает устойчивость предложенного решения.

Таким образом, количественная оценка подтвердила, что предложенный подход обеспечивает на 15-25% лучшее покрытие в условиях высокой неопределенности по сравнению со статическим методом, демонстрируя свою эффективность и робастность.

Заключение. Разработанный подход на основе МППР и Q-функции продемонстрировал эффективность в задачах динамического покрытия транспортных сетей, обеспечивая баланс между минимизацией числа ЦМТС и максимизацией покрытия.

Перспективы исследований связаны с учетом взаимозависимостей рисков, ограничений мощности ЦМТС и адаптацией алгоритма для работы с данными мониторинга в реальном времени.

- 1. Bozhenyuk, A. Optimization of Material Flows in Production Under Conditions of Uncertainty / A. Bozhenyuk, O. Kosenko, E. Kosenko [и др.] // Lecture Notes in Networks and Systems. 2022. Vol. 330. P. 341–349. DOI: 10.1007/978-3-030-87178-9 34.
- 2. Поликарпов, Д. С. Оптимизация размещения центров материально-технического снабжения в условиях динамически изменяющихся целевых критериев / Д. С. Поликарпов, Е. Ю. Косенко // Изв. вузов. Сев. Кавк. регион. Техн. науки. 2025. № 3. С. 26—32. DOI: 10.17213/1560-3644-2025-3-26-32.
- 3. Dehghani Sadrabadi, M. H. Resilient Supply Chain Under Risks: A Network and Structural Perspective / M. H. Dehghani Sadrabadi, A. Jafari Nodoushan, A. Bozorgi-Amiri // Interdisciplinary Journal of Management Studies. 2021. Vol. 14, № 4. P. 735–760. DOI: 10.22059/IJMS.2020.306292.674139.
- 4. Zhang, J., Luo, K., Florio, A. M., & van Woensel, T. (2023). Solving Large Scale Dynamic Vehicle Routing Problems with Stochastic Requests. European Journal of Operational Research, 306(2), 596-614. https://doi.org/10.1016/j.ejor.2022.07.015.
- 5. Вилисов, В. Я. Применение марковских цепей для моделирования и прогнозирования развития пожара / В. Я. Вилисов // Инженерный вестник Дона. 2021. № 3(75). С. 159—169.
- 6. Ozkan O., Kilic S. A monte carlo simulation for reliability estimation of logistics and supply chain networks. IFAC PapersOnLine 52-13 (2019). P. 2080–2085. DOI: 10.1016/j.ifacol.2019.11.512.

### «ГРУШЕВИДНЫЕ» ОКРУЖНОСТИ. МАТОПЕРАЦИИ ПОЛУЧИСЕЛ, НУЛЯ И ЕДИНИЦЫ

Полякова И.С., ORCID 0000-0003-4106-023X

ФГБОУ ВО «Кубанский государственный технологический университет», г. Краснодар, РФ polinga@bk.ru

**Введение.** «Грушевидные» окружности графически отражают разброс прямой и обратной математической операции и требуют дальнейшего изучения. Для получисел некоторые математические операции дают одинаковый результат.

**Цель** работы — описать «грушевидные» окружности, а также математические операции получисел, нуля и единицы.

**Основная часть.** «Грушевидные» окружности позволяют показать разброс прямой и обратной операции относительно центра. Например, 5+2=7 (5a2=7), 5-2=3 (5b2=3). Это будет ровная окружность с центром в точке 5 и радиусом 2. 5 – это начальное число, к которому мы прибавляем и из которого вычитаем, центр окружности. 2 – это число, которое сначала прибавляем, а потом вычитаем, радиус окружности. Эту окружность также можно задать формулой  $(x-5)^2=2^2[1]$ . Окружности, которые соответствуют обратным операциям сложения и вычитания - это «прямые» или «ровные» операциям окружности. Другим обратным уже соответствуют «грушевидные» окружности. Например, операции умножения и деления. 5\*2=10 (5c2=10), 5/2=2.5 (5d2=2.5) (рисунок 1) [5].

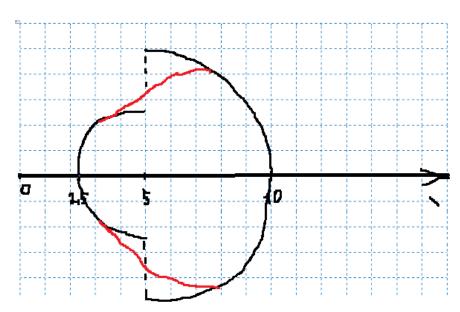



Рис. 1. «Грушевидная» окружность» операции умножение/деление c(5; 2)

5 – это центр окружности, 10 – ее правый радиус, а 2,5 – левый.

Такие операции, как сложение и вычитание нуля (a0 и b0), умножение на ноль (c0), а также умножение и деление на единицу (c1 и d1) не дают «грушевидные» окружности на числовой прямой, так как ноль и единица являются получислами, недочислами.

Существовала теория, что складываем мы нуль, а умножаем ноль. И это два разных нуля. Это потому что при умножении мы выходим далеко за границы числа (большой правый радиус грушевидной окружности), а при сложении нет. Согласно этой теории ацтеков для путешествия к далеким звездам, их называли «0», использовали «о» топливо ((топливо $^*v^2$ )/2), («о» $^*v^2$ )/2). А для путешествия к ближним звездам «у» использовали топливо «у» (топливо $^*v^2$ ) или mv, «у» $^*v^2$  или «у»v. Или наоборот «о» — это ближние, сложение, «у» — это далекие, умножение, были еще «дальние» с искривлением пространства.

Есть математические операции, прямые и обратные, которые не дают «грушевидные» окружности на числовой прямой, а дают дуги. На самом деле можно принять, что это тоже грушевидные окружности, если допустить искривление пространства.

Рассмотрим дуги на примере операции логарифмирования и обратной ей операции извлечения корня.  $Log_232=5$  ( $2\ell 32=5$ ),  $\sqrt{32}\approx 5.7$  ( $2\ell 32=5.7$ ) (рисунок 2). В этом случае результаты матопераций лежат по одну сторону от 2 центра окружность [4].

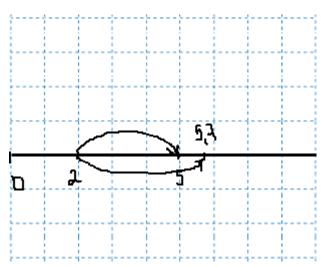



Рис. 2. Дуги операции логарифмирование/извлечение корня  $\ell(2;32)$ 

Рассмотрим математические операции с нолем и единицей. С нолем обратные операции сложения и вычитания дают одинаковый результат, равный исходному числу: x+0=x-0=x. С единицей такими операциями являются умножение и деление: x\*1=x:1=x. Значит, используя исходный код, операции a0=b0; a=b, k=0, для ноля (когда ноль – подчиненное число) операция сложения равна операции вычитания.

Для единицы c1=d1; c=d, k=1, для единицы операции умножения и деления равны. k — это число математической операции, которое мы складываем, вычитаем, умножаем или делим и т.д. С единицей также одинаковы операции возведения в первую степень и извлечение корня первой степени  $\sqrt[1]{x} = x^1$ , то есть q1=f1; q=f, k=1.

Для минус единицы тоже операции умножения и деления равны, дают равные результаты:  $x^*(-1)=x$ : (-1)=-x, то есть (-1)=d(-1); (-1)=-d(-1).

хах=2сх – сложение числа с собой равно умножению на два.

xcx=xf2 – кратное умножение равно возведению в квадрат.

хс2с2=хс4 – два раза умножить на 2 то же самое, что умножить на 4.

3+3=2\*3 — сложение переходит в умножение, сложение можно заменить умножением. 3a3=2c3, 0+0=2\*0; 1+1=2\*1.

 $3*3=3^2$  – умножение переходит в возведение в степень, 3c3=3f2,  $0*0=0^2$ ;  $1*1=1^2$ .

Любое число можно представить в виде: x=a+bi+cs, где a-bi+cs, где a-bi+cs, где a-bi+cs, вещественная часть, b-bi+cs, инимая часть, c-bi+cs, инимая часть. Например, 3+5i+7/0 [2, 3].

Заключение. Некоторые математические операции дают на числовой прямой окружности, ровные или «грушевидные», а некоторые дают дуги. Если допустить искривление пространства, то можно допустить, что это тоже «грушевидные» окружности. Для получисел, нуля и единицы, равны некоторые математические операции.

- 1. Выгодский, М. Я. Справочник по элементарной математике/ М. Я. Выгодский. М.: ACT, 2009. 511 с. ISBN: 978-5-17-053832-4.
- 2. Глазков, Ю. А. Комплексные числа 9–11 классы / Ю. А. Глазков, И. К. Варшавский, М. Я. Гаиашвили.— М.: Экзамен, 2012. 157 с. ISBN 978-5-377-03467-4.
- 3. Кириллов, А. А. Что такое число? / А. А. Кириллов. М., 1993. 80 с. ISBN 5-02-014942-3.
- 4. Полякова, И. С. Графические окружности прямых и обратных операций. Решение квадратных уравнений с отрицательным дискриминантом / И. С. Полякова // Тенденции развития науки и образования, №96, Самара, 2023. ч.8. С.148—151. DOI: 10.18411/trnio-04-2023-434.
- 5. Полякова, И. С. Грушевидные окружности прямых и обратных операций. Математика как нестатичная наука. / И. С. Полякова // Донецкие чтения 2023: образование, наука, инновации, культура и вызовы современности: матер. VIII Междунар. научн. конф. (Донецк, 25–27 октября 2023 г.). Т. 1: Механико-математические, компьютерные и химические науки, управление. Донецк: ДонГУ, 2023. С. 180–182. URL: https://science.donnu.ru/wp-content/uploads/2023/10/dch-2023-tom-1-mehaniko-matem-komp-i-himicheskie-nauki.pdf (дата обращения: 07.08.2025). EDN NTSYHT.

### принятие решений в условиях неопределенности

**Смирнова А.С.,** канд. пед. наук, доц., ORCID 0000-0002-8395-6627, **Цапкова Е.А.** 

ФГБОУ ВО «Приамурский государственный университет имени Шолом-Алейхема», г. Биробиджан, Еврейская АО, РФ dmvan2013@mail.ru, l.tsapckova@yandex.ru

**Введение.** Известно, что уникальные и случайные события связаны с неопределенностью, в то время как массовые случайные события обязательно подчиняются определенным вероятностным закономерностям.

**Целью** данной работы является рассмотрение различных критериев, направленных на выявление наиболее оптимальных решений в условиях неопределенности.

Основная часть. В экономической теории под неопределенностью понимается «неполнота или неточность информации об условиях хозяйственной деятельности, в том числе о связанных с ней затратах и полученных результатах» [2]. Следовательно, если бы не было неопределенности, не было бы и риска. При стремлении к нахождению лучших вариантов минимизации рисков для получения максимальной прибыли, обычно обращаются к различным факторам и критериям, которые помогают создать логическую концепцию для принятия решения.

Задача. Перед сельскохозяйственным предприятием стоит задача оптимизировать реализацию своей продукции, имея три варианта продажи: сразу после уборки, в зимний период и весной. Прибыльность каждого варианта определяется ценой продажи, расходами на хранение и потенциальными потерями. Матрица содержит расчеты общей прибыли (в миллионах рублей) для различных сценариев соотношения доходов и издержек  $(S_1, S_2, S_3)$  на весь период реализации.

|       | $S_1$ | $S_2$ | $S_3$ |
|-------|-------|-------|-------|
| $A_1$ | -2    | 4     | 5     |
| $A_2$ | -3    | 6     | 10    |
| $A_3$ | 2     | -7    | -1    |

Определить наиболее предпочтительную стратегию, используя подходы Байеса, Лапласа, Вальда и Гурвица. Исходные данные включают: вероятности различных сценариев спроса ( $p_1=0.1,\ p_2=0.7,\ p_3=0.2$ ), степень осторожности (коэффициент пессимизма  $\lambda=0.4$ ) и надежность прогноза (коэффициент достоверности u=0.6).

Решение.

Применение критерия Байеса, основанного на максимизации математического ожидания (средней ожидаемой выгоды), предполагает

выбор стратегии, которая демонстрирует наивысший показатель эффективности. Цена игры в этом случае определяется по формуле [1]:

$$w = \max_{1 \le i \le m} w_i = \max_{1 \le i \le m} \sum_{j=1}^n a_{ij} \cdot p_j.$$

Для задачи

$$w_1 = -2 \cdot 0.1 + 4 \cdot 0.7 + 5 \cdot 0.2 = -0.2 + 2.8 + 1 = 3.6$$
  
 $w_2 = -3 \cdot 0.1 + 6 \cdot 0.7 + 10 \cdot 0.2 = -0.3 + 4.2 + 2 = 5.9$   
 $w_3 = 2 \cdot 0.1 + (-7) \cdot 0.7 + (-1) \cdot 0.2 = 0.2 - 4.9 - 0.2 = -4.9$   
Выбираем максимальное  $w = \max\{3.6; 5.9; -4.9\} = 5.9$ .

Следовательно, наилучшим выбором становится стратегия  $A_2$  — реализация товара в период зимних месяцев.

Критерий Лапласа, известный как критерий недостаточного основания, основан на предположении о равной вероятности всех возможных исходов и ведет к выбору стратегии с максимальным средним выигрышем [3]:

$$w_i = \bar{a} = \max_i \frac{\sum_{j=1}^n a_{ij}}{n}.$$

Находим среднее значение элементов каждой строки

$$w_{i} = \frac{1}{3} \cdot \sum_{j=1}^{n} a_{ij} = \frac{1}{3} \cdot (a_{i1} + a_{i2} + a_{i3})$$

$$w_{1} = \frac{1}{3} \cdot (-2 + 4 + 5) = \frac{1}{3} \cdot 7 = \frac{7}{3}$$

$$w_{2} = \frac{1}{3} \cdot (-3 + 6 + 10) = \frac{13}{3} \cdot 7 = \frac{91}{3}$$

$$w_{3} = \frac{1}{3} \cdot (2 - 7 - 1) = \frac{1}{3} \cdot (-6) = -2$$

Максимальное значение, которое выбираем, составляет  $\frac{91}{3}$ . Именно это значение является оптимальной стратегией  $A_2$  для продажи в зимние месяцы.

Критерий Вальда — максиминный критерий рекомендует принять решение  $i_0$ , такое что

$$w_i = a_{i0} = \max_i a_i = \max_i \left( \min_j q_{ij} \right)$$

Находим в каждой строке минимальный элемент

$$w_1 = \min\{-2; 4; 5\} = -2$$

$$w_2 = \min\{-3; 6; 10\} = -3$$

$$w_3 = \min\{2; -7; -1\} = -7$$

Определяем максимальное значение  $w = \max\{-2; -3; -7\} = -2$ , следовательно, стратегия  $A_1$  – продажа после сбора является оптимальной с учетом данного критерия.

По критерию Гурвица — критерию пессимизма-оптимизма ( $\Pi$ -O) — принимается решение i, на котором достигается максимум

$$w_i = \lambda \cdot \min_j a_{ij} + (1 - \lambda) \cdot \max_j a_{ij}$$

где  $0 \le \lambda \le 1$  и  $\lambda$  — коэффициент пессимизма.

Рассчитаем для каждой строки значения критерия, по условию  $\lambda = 0.4$ , поэтому имеем:

$$w_1 = 0,4 \cdot \min\{-2; 4; 5\} + (1 - 0,4) \cdot \max\{-2; 4; 5\} = 0,4 \cdot (-2) + 0,6 \cdot 5$$

$$= -0,8 + 3 = 2,2$$

$$w_2 = 0,4 \cdot \min\{-3; 6; 10\} + (1 - 0,4) \cdot \max\{-3; 6; 10\}$$

$$= 0,4 \cdot (-3) + 0,6 \cdot 10 = -1,2 + 6 = 4,4$$

$$w_2 = 0,4 \cdot \min\{2; -7; -1\} + (1 - 0,4) \cdot \max\{2; -7; -1\}$$

$$= 0,4 \cdot (-7) + 0,6 \cdot 2 = -2,8 + 1,2 = -1,6$$

Рассчитываем максимальное значение из данных и получаем  $w = \max\{2,2;4,4;-1,6\} = 4,4$ . В результате, согласно этому критерию, оптимальной стратегией будет являться  $A_2$ , то есть продавать товар зимой.

**Заключение.** Таким образом, стратегия  $A_2$ , направленная на продажу в зимний период, превосходит остальные стратегии во всех рассмотренных критериях и считается наиболее оптимальной.

- Блягоз, З. У. Принятие решений в условиях риска и неопределенности/ З. У. Блягоз, А. Ю. Попова // Вестник Адыгейского государственного университета. 2006. № 4.
   URL: https://cyberleninka.ru/article/n/prinyatie-resheniy-v-usloviyah-riska-i-neopredelennosti (дата обращения: 10.08.2025).
- 2. Лобанов, А. А. Энциклопедия финансового риск-менеджмента / А. А. Лобанов. М., 2009. 932 с. ISBN: 978-5-96142-284-9.
- 3. Малых, Т. В. Применение разных методов к решению задач как способ формирования компетенций дисциплины «Теория игр» / Т. В. Малых // Актуальные проблемы гуманитарных и экономических наук: Сборник материалов XVIII Межрегиональной научно-практической конференции, Киров, 30 марта 2018 года. Киров: Общество с ограниченной ответственностью «Радуга-ПРЕСС», 2018. С. 179—182. URL: https://www.elibrary.ru/item.asp?id=35014271 (дата обращения: 10.08.2025).

# РАЗРАБОТКА ИНТЕРАКТИВНОЙ ОБУЧАЮЩЕЙ ПРОГРАММЫ ПО КУРСУ «ТЕОРИЯ ГРАФОВ: ВВЕДЕНИЕ И ПРИКЛАДНЫЕ ЗАДАЧИ» С ВИЗУАЛИЗАЦИЕЙ И АДАПТИВНЫМИ МЕТОДАМИ РЕШЕНИЯ ЗАДАЧ ТЕОРИИ ГРАФОВ

*Суровцев Д.И.*, ORCID 0009-0005-2246-4513, *Шевцов Д.В.*, д-р техн. наук, доц., ORCID 0009-0009-3874-6223 ФГБОУ ВО «Донецкий государственный университет», г. Донецк, РФ *surovcevdanil@mail.ru* 

**Введение.** Теория графов — фундаментальная область дискретной математики, находящая широкое применение в компьютерных науках, инженерии, биоинформатике, социальных исследованиях, логистике, кибербезопасности и других дисциплинах. Рост сложности задач и их практическая значимость требуют новых подходов к обучению студентов, позволяющих не только овладеть базовыми знаниями, но и развить навыки адаптивного применения методов теории графов в динамично меняющихся условиях.

Особенность современного образования заключается в том, что студенты всё чаще сталкиваются с задачами, которые невозможно решить лишь по шаблонам. Поэтому особенно важным становится формирование гибкого мышления, умения применять методы графов в новых областях. Для этого необходимы средства, позволяющие объединить теорию, практику и исследование в рамках единой обучающей системы.

Создание интерактивной образовательной программы, включающей адаптивные методы обучения и динамическую визуализацию графовых структур и алгоритмов, становится актуальной задачей современного электронного образования.

Актуальность и цели исследования. Классическое обучение по курсу «Теория графов» опирается на лекции и задачники, что ограничивает вовлечение студентов. Интерактивные подходы позволяют решать ряд проблем, такие как: сложность восприятия абстрактных понятий (ориентированные графы, потоки) за счёт наглядных моделей и симуляций; необходимость в практической отработке навыков на реальных прикладных задачах (например, анализ маршрутов или моделирование социальных сетей); потребность в индивидуальной траектории обучения, учитывающей уровень подготовки и стиль мышления обучающегося.

Цель проекта – разработать комплексную систему, которая сочетает:

1. Интерактивную визуализацию графовых структур и алгоритмов для повышения наглядности обучения;

- 2. Адаптивные механизмы постановки задач и проверки решений, обеспечивающие персонализацию;
- 3. Междисциплинарное применение: использование графов для анализа сетей, логистики, биоинформатики, ИТ-инфраструктуры и других областей.

Реализация этой цели позволит перейти от статичного изложения материала к динамической и исследовательской модели обучения.

Концепция адаптивного обучения. Адаптивная система предполагает использование технологий, позволяющих подстраивать обучение под конкретного студента. Это достигается за счёт:

- 1. Диагностики уровня знаний на основе входного тестирования, анализа правильных и ошибочных решений;
- 2. Динамического изменения сложности задач: успешные студенты получают более сложные задания исследовательского уровня, а тем, кто испытывает трудности, предлагаются дополнительные упражнения;
- 3. Интеллектуальных подсказок пошаговое раскрытие решений, что формирует правильную стратегию рассуждений;
- 4. Индивидуальных образовательных маршрутов, которые могут быть направлены как на теоретическое углубление (доказательства теорем, анализ алгоритмов), так и на практическое применение (логистика, моделирование сетей).

Таким образом, программа превращается из пассивного курса в цифрового интеллектуального наставника, способного вести каждого обучающегося своим маршрутом.

Визуализация и интерактивность. Ключевой элемент программы — собственная библиотека графической визуализации, созданная специально для реализации учебных алгоритмов. Она позволяет формировать интуитивное понимание сложных структур и процессов за счёт пошагового отображения изменений в графе. Например, при работе алгоритма поиска в глубину или ширину вершины и рёбра подсвечиваются по мере их обработки, при выполнении алгоритма Дейкстры динамически меняются значения кратчайших расстояний, а при построении остовного дерева рёбра последовательно «включаются» в структуру. Таким образом, студент может наблюдать не только конечный результат, но и весь процесс вычислений.

Разработка собственной библиотеки даёт возможность обеспечить полный контроль над анимацией, расширить систему адаптивными подсказками, встроить подсветку ошибок и управляемый темп воспроизведения алгоритмов.

Функциональные возможности программы. Разрабатываемая система объединяет несколько направлений работы, позволяя студентам последовательно переходить от теории к практике и исследованию. В ней предусмотрено представление основного материала в удобной и логически связанной форме, где каждое понятие и алгоритм сопровождаются

пояснениями и ссылками на смежные темы. Для закрепления знаний в программу встроен большой набор задач различной сложности: от простых примеров для начинающих до исследовательских кейсов, требующих комплексного подхода. Решения проверяются автоматически, при этом система не только оценивает правильность ответа, но и анализирует ошибки, предлагая рекомендации по их устранению.

Особое внимание уделено адаптивности: программа формирует индивидуальные задания с учётом прогресса обучающегося, подсказывает, какие темы стоит повторить, и предлагает новые задачи, стимулирующие развитие. Каждый студент получает доступ к личному кабинету, где отражаются его результаты, динамика роста и рекомендации для дальнейшего изучения. Дополнительно курс включает исследовательскую составляющую: обучающиеся могут решать прикладные задачи из разных областей.

Заключение. Разработка адаптивной обучающей программы по курсу «Теория графов» позволит перейти от традиционного преподавания к персонализированному цифровому обучению нового поколения.

Совмещение визуализации, интерактивности и интеллектуальной адаптации создаст условия для подготовки специалистов, которые способны не только усваивать готовые методы, но и самостоятельно применять их в исследовательской и профессиональной деятельности.

Такой подход отвечает современным вызовам цифровизации образования и формирует основу для будущего интегрированного обучения в университетах и онлайн-среде.

- 1. Емеличев, В. А. Лекции по теории графов: для студентов по специальности «Математика» и «Прикладная механика» / В. А. Емеличев, О. И. Мельников, В. И. Сарванов, Р. И. Тышкевич. Москва: Наука, 1990. 382 с: ил.; 21 см. 22000 экз. ISBN 5-02-013992-0. Текст: непосредственный.
- 2. Полат, Е. С. Новые педагогические и информационные технологии в системе образования / Е. С. Полат, М. Ю. Бухаркина, М. В. Моисеева, А. Е. Петров; под редакцией Е. С. Полат. Москва: Издательский центр «Академия», 2002. 272 с. 30000 экз. ISBN 5-7695-0811-6. Текст: непосредственный.
- 3. Евстигнеев, В. А. Применение теории графов в программировании / В. А. Евстигнеев; под редакцией А. П. Ершова. Москва: Наука, 1985. 352 с.: ил.; 20 см. 20000 экз. Текст: непосредственный.

### РАЗРАБОТКА ГЕНЕРАТОРА РЕКУРРЕНТНЫХ УРАВНЕНИЙ

### Сухан И.В., Штрейс И.В.

ФГБОУ ВО «Кубанский государственный университет», г. Краснодар, РФ *irina-sukhan@yandex.ru* 

Генераторы математических задач давно используются в высшем образовании, причем как в традиционном, очном обучении, так и в дистанционном [1]. Практическая их польза очевидна — это составление уникальных контрольных работ и типовых расчетов по математическим дисциплинам.

Кроме методического применения, это также полезное упражнение для отработки навыков программирования у студентов соответствующих направлений обучения. При этом предметная область, подход к разработке, средства программирования могут варьироваться в зависимости от уровня подготовки студента [2, 3].

В этой статье представлен разработанный программный продукт, создавать рекуррентные позволяющий однородные уравнения коэффициентами. Алгоритм решения такого постоянными рекуррентных уравнений состоит в составлении соответствующего характеристического уравнения и нахождении его корней. В зависимости от вида найденных корней и их кратности выписывается общее решение [4].

Отсюда и вытекает главная идея генерации задачи: задаются корни — действительные или комплексно-сопряженные, составляется многочлен, корнями которого и являются заданные числа, затем формируется непосредственно рекуррентное соотношение. Так как в общем решении присутствуют произвольные константы, зададим их тоже для вычисления начальных условий.

Результатом разработки является приложение, написанное на языке Python единым кодом и собранное при помощи утилиты Pyinstaller. Интерфейс интуитивно понятен и написан с использованием библиотеки Tkinter, элементы внутри окон расположены в отведенных для них ячейках, координаты которых определяются столбцом и строкой. При открытии предлагается выбор составления вариантов: вручную или автоматически. В зависимости от выбранного способа будет открыто новое окно.

Ручное составление варианта предлагает ввод корней, в зависимости от их типа, и коэффициентов при них. Можно задать по пять корней и коэффициентов следующих типов: один вещественный, вещественный кратности два, два комплексно-сопряженных (рисунок 1).

| Ввод парам | метров                   | Вве | едите корни (t) и | коэффициент | ъ при них (с) |                               |       |     |  | × |
|------------|--------------------------|-----|-------------------|-------------|---------------|-------------------------------|-------|-----|--|---|
|            | Один вещественный корень |     | Кратный корень    |             |               | Сопряженные комплексные корни |       |     |  |   |
| t=         | C=                       | t=  | c1=               | c2=         | p=            | ф=                            | c1=   | c2= |  |   |
| t=         | c=                       | t=  | c1=               | c2=         | p=            | φ=                            | c1=   | c2= |  |   |
| t=         | C=                       | t=  | c1=               | c2=         | p=            | ф=                            | c1=   | c2= |  |   |
| t= [       | C=                       | t=  | c1=               | c2=         | p=            | ф=                            | c1=   | c2= |  |   |
| t=         | C=                       | t=  | c1=               | c2=         | p=            | ф=                            | c1=   | c2= |  |   |
|            | Добавить задание         |     |                   |             |               | Завершить и сохр              | анить |     |  |   |

Рис. 1. Окно ввода исходных данных

Ответом является сумма этих корней с коэффициентами при них. По ним, в свою очередь, составляется характеристический многочлен рекуррентного соотношения и начальные условия.

Автоматическое составление вариантов предлагает ввести количество вариантов работ, заданий, а также выбрать уровень сложности (рисунок 2).

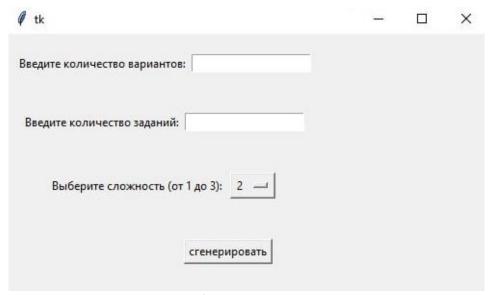



Рис. 2. Окно выбора уровня сложности

В процессе работы используется умножение многочлена на многочлен. Эта операция выполняется при помощи библиотеки SymPy. Чтобы избежать использования библиотек для обработки комплексных чисел, вид многочлена, полученного при умножении двух многочленов, корнями которых являются комплексно-сопряженные числа, заранее приводится к виду без использования мнимой единицы. С использованием данных, хранящихся в массивах корней и коэффициентов, собирается функция, которая рассчитывает начальные условия. Полученные числа при вводе их в документ также обрабатываются при помощи библиотеки SymPy

и преобразуются в Latex формат, что позволяет использование радиан для описания углов, а также иррациональных чисел и обыкновенных дробей.

Программа выдает задания в формате Тех, что оставляет возможность редактирования работы. Каждому файлу присваивается уникальный номер в зависимости от времени его создания и номера варианта. В каждом варианте задания отсортированы в порядке повышения сложности. Пример документа с готовыми заданиями представлен на рисунке 3.

Работа по теме «Рекуррентные соотношения» Вариант 1

### 1 Задание

```
Решить рекуррентное соотношение: a_n + 2 \cdot a_{n-1} - 63 \cdot a_{n-2} = 0
Начальные условия: a_0 = 10, a_1 = 54
```

### 2 Задание

```
Решить рекуррентное соотношение: a_n+17\cdot a_{n-1}+72\cdot a_{n-2}=0
Начальные условия: a_0=-2, a_1=21
```

### 3 Задание

```
Решить рекуррентное соотношение: a_n + 8 \cdot a_{n-1} = 0
Начальные условия: a_0 = -19, a_1 = 72
```

Рис. 3. Пример созданного документа

В дальнейшем возможно усовершенствование программы: добавление корней кратности большей, чем 2; возможность составлять неоднородные рекуррентные соотношения; можно сделать более привлекательный дизайн.

- 1. Окишев, С. В. Проблема создания и использования генераторов и решателей математических задач // Интернет-журнал «Мир науки», 2018. № 3. URL: https://mir-nauki.com/PDF/56PDMN318.pdf (доступ свободный).
- 2. Голик, А. А. Разработка программного обеспечения для эффективного решения комбинаторных задач / А. А. Голик, И.В. Сухан // Теоретические и прикладные аспекты естественно-научного образования в эпоху цифровизации. Материалы IV Международной научно-практической конференции. В 2-х томах. Брянск, 2025. С. 58–64.
- 3. Солтан, А. А. Автоматизация решения задач математической логики / А. А. Солтан // Молодой ученый. -2024. -№ 24 (523). C. 102–109.
- 4. Тишин, В. В. Дискретная математика в примерах и задачах / В. В. Тишин. СПб, БХВ-Петербург, 2008.

### ВОЗДЕЙСТВИЕ ВАРИАЦИЙ МАГНИТНОГО ПОЛЯ ЗЕМЛИ НА ПОКАЗАНИЯ МАГНИТНЫХ КОМПАСОВ В ПОЛЯРНЫХ ШИРОТАХ

**Терлыч С.В.**<sup>1</sup>, канд. техн. наук, ORCID 0000-0002-6044-3087, **Полещук В.П.**<sup>1</sup>, **Карпинский В.Д.**<sup>1</sup>,

**Несин Д.Ю.**<sup>2</sup>, канд. техн. наук, доц., ORCID 0009-0000-7221-8496  $^{1}$ ФГБОУ ВО «Херсонская государственная морская академия», г. Херсон, РФ,  $^{2}$ АО «ЦКБ «Коралл», г. Севастополь, РФ  $slavus\_limanskii@mail.ru$ 

**Введение.** Влияние изменений (вариаций) индукции магнитного поля Земли (МПЗ) в периоды магнитных бурь на показания магнитных компасов (МК) общеизвестно, но в тоже время количественная оценка этого влияния в технической литературе отсутствует.

Известно также, что вариации МПЗ по мере увеличения географической широты места их измерений возрастают [1]. Вариации МПЗ сказываются на показаниях МК, устанавливаемых на транспортных, промысловых и специальных судах, которые эксплуатируются в районе Северного морского пути (СМП).

**Основной текст.** Магнитный компас устанавливается на борту каждого судна в соответствии с требованиями международной конвенции СОЛАС 74 [2]. МК подразделяются на главные и запасные (путевые).

В соответствии с требованиями, предъявляемыми Российским морским Регистром судоходства к главным компасам судов [3, 4], они должны состоять из нактоуза и котелка, внутри которого установлена картушка с магниточувствительным элементом. МК должен иметь дистанционную оптическую передачу курса от картушки на индикатор, установленный перед рулевым, а также может иметь выносной цифроаналоговый индикатор, на котором должен отображаться истинный курс судна.

Влияние вариаций МПЗ на показания МК для судов, работающих в высоких широтах, возрастает, поскольку горизонтальная составляющая индукции МПЗ H, создающая направляющий момент чувствительных элементов МК в этой зоне мала.

Минимальное значение H на СМП в области  $90...120^{0}$  восточной долготы севернее полуострова Таймыр составляет до 4 мкТл (для сравнения — в Санкт-Петербурге  $H\approx 15$  мкТл). Изменение магнитного отклонения  $\Delta d$ , вызванные вариациями в равные погрешностям измерения магнитного курса  $\Delta K_{\rm M}$ , могут быть получены зависимостью

$$\Delta d = \Delta K_{\rm M} = \operatorname{arctg} \frac{\Delta Y}{H},\tag{1}$$

где  $\Delta Y$  – амплитудное значение поперечной составляющей вариаций МПЗ в «бурные» дни, то есть составляющей, перпендикулярной к плоскости магнитного меридиана.

Вероятность появления вариаций МПЗ зависит от солнечной активности. Значения вероятности появления вариации  $\Delta Y$  в годы высокой солнечной активности приведены в таблице 1 [5].

Из этих данных следует, что наиболее вероятно появление вариаций с амплитудными значениями от 15 до 210 нТл. Погрешности измерения магнитного курса  $\Delta K_{\rm M}$ , которые вызваны вариациями МПЗ, рассчитанные по формуле (1) приведены в таблице 2.

**Резюме.** Из приведённых данных можно заключить, что наиболее вероятны погрешности измерений магнитного курса от 0,2 до  $3,0^0$ , но в тоже время существует некая вероятность (0,0065) появления больших значений погрешности.

Зависимость амплитуд вариаций от вероятности вариаций

Таблица 1

| Вероятность вариаций | Амплитуда вариаций, нТл |
|----------------------|-------------------------|
| 0,3                  | 0                       |
| 0,2                  | 15                      |
| 0,24                 | 30                      |
| 0,24                 | 60                      |
| 0,18                 | 120                     |
| 0,07                 | 210                     |
| 0,03                 | 360                     |
| 0,02                 | 600                     |
| 0,01                 | 1000                    |
| 0,0005               | 1500                    |

Таблица 2

Погрешности измерения магнитного курса  $\Delta K_{\rm M}$ 

| $\Delta K_{\rm M}$ , град | Амплитуда вариаций, нТл |  |  |  |
|---------------------------|-------------------------|--|--|--|
| 0                         | 0                       |  |  |  |
| 0,2                       | 15                      |  |  |  |
| 0,4                       | 30                      |  |  |  |
| 0,8                       | 60                      |  |  |  |
| 1,6                       | 120                     |  |  |  |
| 3,0                       | 210                     |  |  |  |
| 5,0                       | 360                     |  |  |  |
| 8,5                       | 600                     |  |  |  |
| 14,0                      | 1000                    |  |  |  |
| 20,5                      | 1500                    |  |  |  |

Учитывая, что погрешность курсоуказания МК при отсутствии качки не должна превышать  $1^0$ , следует принять меры для исключения влияния погрешности на судовождение в полярных широтах.

Такими мерами могут являться:

- комплексирование дистанционных МК и гирокурсоуказателей (ГКУ);
- включение в состав дистанционных МК прибора для непрерывного автоматического сравнения показаний МК и ГКУ с индикацией рассогласования их отсчётов и пороговым включением световой и звуковой сигнализации о рассогласовании;
- включение в состав визуальных МК магнитометрического канала, служащего для измерения вертикальной составляющей индукции МПЗ и наличия вариаций МПЗ с пороговым устройством и сигнализацией.

Измерение вертикальной составляющей является предпочтительным, так как результаты этих измерений не зависят от курса судна.

- 1. Тарасов, Л. В. Земной магнетизм / Л. В. Тарасов // Долгопрудный: Издательский Дом «Интеллект», 2012. 184 с.
- 2. Международная конвенция по охране человеческой жизни на море 1974 года СОЛАС-74. С изменениями на 01.01.2016 [Электронный ресурс]: <docs.cntd.ru/document/901765675>.
- 3. Грязин, Д. Г. Влияние внешних факторов на переходные процессы магнитных компасов в высоких широтах / Д. Г. Грязин, И. В. Сергачёв // Известия высших учебных заведений. Приборостроение. 2025. С. 921–929.
- 4. Правила по оборудованию морских судов. Ч. V. Навигационное оборудование. СПб: Российский морской регистр судоходства, 2016.
- 5. Лазутин, Л. Л. Мировые и полярные магнитные бури / Л. Л. Лазутин; под редакцией проф. Ю. И. Логачева. НИИЯФ МГУ, 2012. 213 с.

### ПРОЕКТИРОВАНИЕ СИСТЕМЫ УПРАВЛЕНИЯ АДДИТИВНЫМ ПРОИЗВОДСТВОМ НА БАЗЕ 1C: ERP

Фадеев Р.Н., ORCID 0009-0003-7819-1046,

**Посаженников А.А.,** канд. экон. наук, доц., ORCID 0000-0001-6018-4081 ФГБОУ ВО «Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых», г. Владимир, РФ fadeevroman.shua@gmail.com

Введение. Процесс внедрения цифровых инструментов управления все чаще можно наблюдать на современном производстве [1, 2]. ERP-системы (англ. enterprise resource planning, планирование ресурсов предприятия) – один из этих инструментов. Это комплексное программное обеспечение, которое интегрирует все основные бизнес-процессы компании в единое информационное пространство и автоматизирует их, используя общую базу данных.

Стоимость современных ERP-систем довольно высокая, но в исследованиях отмечается, что экономический эффект от внедрения ERP-системы фирмы «1С» в среднем составляет: снижение объемов материальных запасов — 20 %; сокращение расходов на материальные ресурсы — 11 %; снижение производственных издержек — 12 %; сокращение операционных и административных расходов — 20 %; снижение себестоимости продукции — 8%; увеличение объема выпускаемой продукции — 29 %; рост оборачиваемости складских запасов — 25 %; сокращение сроков исполнения заказов — 26 %; рост прибыли — 14 %; сокращение трудозатрат — 35 %; ускорение получения управленческой отчетности в 3 раза [3].

**Цель нашего** исследования – разработать систему управления аддитивным производством на базе 1C: ERP.

Основная часть. Проектирование системы управления аддитивным производством на базе 1С: ERP предполагает адаптацию существующего функционала 1С: ERP для автоматизации процессов, связанных с 3D-печатью, включая управление номенклатурой, планирование производства, учет материалов, контроль выполнения заказов и анализ затрат. Для этого необходимо разработать новые или расширить существующие документы и справочники, настроить производственные спецификации для аддитивных технологий, интегрировать систему с оборудованием и провести обучение пользователей.

Рассмотрим более подробно основные этапы проектирования, осуществленные нами на практике в Конструкторском Опытном Бюро Радиоаппаратуры (АО «КОБРА»). Компания разрабатывает и производит

широкий ассортимент блокираторов радиовзрывных устройств и сотового сигнала. В структуре предприятии создана новое производственное подразделение — группа новых продуктов, которая обеспечивает процесс изготовления деталей на 3D-принтере по электронной модели.

В ходе анализа бизнес-процессов были определены все этапы аддитивного производства (от получения заказа на печать до выпуска готовой детали и контроля качества), описаны особенности работы с 3D-моделями, расходными материалами (пластики, порошки), параметрами печати и оборудованием (3D-принтеры).

Следующий этап включал адаптацию и настройку 1C: ERP. Разработаны спецификации для изделий, производимых с использованием аддитивных технологий. В спецификациях указываются производственные этапы необходимые для производства детали или узла, а также операции, которые входят в этапы. Помимо этого, учитываются расходные материалы и трудозатраты получаемые после нормирования работы персонала, принимающего участие в производственном этапе. Это позволяет вести учет ресурсов и трудозатрат, использованных в производстве. Внесена информация о рабочих центрах. Рабочий центр представляет собой оборудование и связанный с ним квалифицированный персонал для выполнения технологических операций. Для планирования производства произведены настройка взаимодействия планово-диспетчерского отдела с производственным цехом, формирование этапов производства на основе заказов от поставщиков, планирование графика производства, основываясь на доступности рабочих центров (рис.1) и графике загрузки рабочих центров, которые автоматически формируются системой.

| ← → ☆ Доступность видов рабочих центров         |     |  |         |            |                    |            |            |          |           |  |
|-------------------------------------------------|-----|--|---------|------------|--------------------|------------|------------|----------|-----------|--|
| Сохранить изменени                              | я   |  |         |            |                    |            |            |          |           |  |
| Ввод доступности:                               |     |  |         | Подраздел  | Период с:          |            | по:        |          |           |  |
| Для формирования графика производства   ▼ Разра |     |  |         | Разработка | а ГНП (г.Владимир) | -          | 02.09.2025 | <b>=</b> | 26.09.202 |  |
| Заполнить доступность Показать ручные изменения |     |  |         |            |                    |            |            |          |           |  |
| Вид рабочего центра                             | ï   |  | Заполн  | ено по     | Итого, ч           | 02 сентябр | 03 сентябр | 04 c     | ентябр    |  |
| Принтер 3D Creat Bot                            |     |  | 025     | 168,00     | 8,00               | 8,00       |            | 8,00     |           |  |
| D600 Pro 2                                      |     |  | 26.09.2 | 025        |                    |            |            |          |           |  |
| Принтеры 3D Creality                            | 000 |  | 30.12.2 | 025        | 641,00             | 32,00      | 32,00      |          | 32,00     |  |
| MAX Neo(1001020445)                             | ٠.  |  | 26.09.2 | 025        | 26,00              | 26,00      |            |          |           |  |

Рис. 1. Доступность видов рабочих центров

На основании этапа и входящих в него операций формируется сменносуточное задание (рис. 2). Оно содержит в себе данные по операциям к выполнению и доступным исполнителям – рабочим центрам или персоналу.

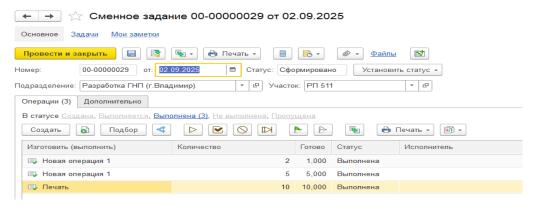



Рис.2. Сменно-суточное задание

На данном этапе проектирования системы управления производством обеспечен учет наличия расходных материалов для 3D-печати и их передачи в производство, настроен учет выпуска готовых изделий и их приходование на склад, определена методика расчета себестоимости аддитивной продукции, включая стоимость материалов, амортизацию оборудования и трудозатраты операторов печати.

На третьем этапе рассмотрена возможность интеграции 1C: ERP с 3D-принтерами для автоматического получения данных о ходе печати, расходе материалов и возникновении ошибок.

На последующем этапе созданы отчеты для анализа загрузки оборудования, стоимости печати различных изделий, эффективности использования материалов и выявления узких мест производства.

Завершился процесс проектирования системы управления аддитивным производством на базе 1С: ERP обучением работе с указанной системой сотрудников, ответственных за планирование, производство, склад и контроль качества.

Заключение. Накопленный опыт позволяет нам говорить о том, что информационно-аналитическая поддержка производства с помощью современных ERP-систем способствует повышению качества управления и контроля над основными бизнес-процессами и ключевыми ресурсами предприятия.

- 1. Огурцова, Е. Ю. Тренды цифровой трансформации в логистике / Е. Ю. Огурцова, Р. Н. Фадеев // Транспорт и логистика устойчивого развития территорий, бизнеса, государства (драйверы роста, тренды и барьеры). Москва, 2023. С. 290–292.
- 2. Огурцова, Е. Ю. Управление данными как инструмент достижения устойчивого развития промышленных компаний в условиях импортозамещения / Е. Ю. Огурцова, Р. Н. Фадеев // Цифровая трансформация промышленности: новые горизонты. Москва, 2022. С. 321–326
- 3. Шитова, Т. Ф. Ведение контроллинга с помощью информационно-аналитической системы «1C:ERP Управление предприятием 2» / Т. Ф. Шитова // Международный бухгалтерский учет. 2018. Т. 21, № 9. С. 1007–1023.

#### ПРИМЕНЕНИЕ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ В УПРАВЛЕНИИ ТРУДОВЫМИ РЕСУРСАМИ

#### Фролова Т.А.,

**Фролова П.И.,** канд. пед. наук, доц., ORCID 0000-0002-6432-8211 ФГБОУ ВО «Омский государственный педагогический университет» г. Омск, РФ *frolova tata1609@mail.ru* 

**Введение.** Современные условия организации многих рабочих процессов требуют высокой результативности управления персоналом. В данных условиях информационные технологии (ИТ) становятся ключевым инструментом для оптимизации кадровых процессов. При этом в контексте управления организацией ИТ позволяют автоматизировать многие рутинные операции, повысить точность данных и обеспечить оперативную поддержку принятия решений.

Основная часть. Особое значение ИТ приобретают в сфере управления трудовыми ресурсами (персоналом). Целью данной работы является рассмотрение роли информационных технологий в повышении результативности управления персоналом на предприятиях различного масштаба. При детальном рассмотрении роли ИТ в управлении организацией, можно выделить основные функции применения ИТ в управлении: в первую очередь, это сбор и обработка данных, а также хранение и анализ информации и генерация управленческих решений [1].

Можно сказать, что применяемые ИТ не просто автоматизируют процессы, но и способствуют созданию новых знаний для стратегического планирования, поэтому для разработки эффективной системы необходимо провести анализ объекта управления, определить задачи, выбрать данные и разработать информационную модель.

В основе функционирования ИТ-систем для определения качества, гибкости и устойчивости управленческой деятельности лежит ряд следующих фундаментальных принципов:

- 1. Оперативный предполагает обработку данных и формирование управленческих решений в режиме реального времени
- 2. Сквозной заключается в полной интеграции всех этапов управленческого цикла от первичного сбора данных до контроля исполнения управленческих решений.
- 3. Адаптивный ориентирован на способность информационной системы быстро реагировать на изменения как во внешней (экономика, законодательство, конкуренция), так и во внутренней среде организации (структурные и кадровые изменения, технологические обновления).
- 4. Сетевой основывается на построении децентрализованной, но согласованной структуры взаимодействия между подразделениями [2].

Реализация вышеназванных принципов лежит в основе создания интеллектуальных управленческих систем, способных обеспечить устойчивое развитие организации в условиях цифровой экономики. Комплексное применение данных подходов позволяет трансформировать традиционные модели управления.

В настоящее время многими организациями достаточно широко используются следующие системы:

- ERP (Enterprise Resource Planning) для интеграции финансовых, производственных и кадровых процессов.
- CRM (Customer Relationship Management) для управления взаимодействием с клиентами.
- BI (Business Intelligence) для применения аналитических платформ с целью обработки больших данных.
- SCM (Supply Chain Management) для управления логистическими цепочками.
- MRP (Material Requirements Planning) для планирования материальных потребностей [4].

Отметим отдельно, что особое место занимают и широко применяются HRM-системы (Human Resource Management) — специализированные решения для управления человеческими ресурсами.

Проанализируем, в чем состоят ключевые особенности управления трудовыми ресурсами в цифровую эпоху. Анализ трудовых ресурсов включает: обеспеченность персоналом; движение кадров (коэффициенты приёма, увольнения, текучести); использование фонда рабочего времени; производительность труда; эффективность фонда заработной платы [3].

кадров позволяет не только Движение оценить удовлетворённости сотрудников, но и качество условий труда и мотивации. Например, высокая текучесть молодёжи (до 25 лет) связана с поиском самореализации. Сотрудники 26-35 лет демонстрируют максимальную трудовую активность, а у сотрудников старше 45 лет снижается физическая выносливость. HR-специалисты играют роль связующего звена между руководством и персоналом, так как отвечают за подбор, адаптацию, обучение, оценку и мотивацию сотрудников, поэтому в большинстве своем современные компании рассматривают расходы на персонал не как затраты, а как стратегические инвестиции, направленные на повышение лояльности и эффективности.

Поэтому автоматизация кадровых процессов становится обязательным условием эффективного управления, особенно в крупных организациях, где на помощь приходят системы управления трудовыми ресурсами (HRMS) [4]. Существуют разные уровни внедрения ИТ в НК. Малые предприятия часто используют базовые системы, функционал которых включает такие задачи как кадровый и бухгалтерский учёт, учёт отпусков и командировок. Например, «1С: Зарплата и управление

персоналом», «Контур.Персонал». Предприятия различных масштабов могут применить специализированные программы, предназначенные для тестирования и аттестации кандидатов, управления их обучением, а также для оценки эффективности сотрудников. Крупные компании же зачастую используют полнофункциональные HRM-системы, охватывающие все уровни управления – от операционного до стратегического. Подобные системы ΜΟΓΥΤ включать такие модули, как кадровый документооборот, бухгалтерский учет, подбор и оценка персонала, управление развитием и мотивацией сотрудников, аналитику и отчетность. (SAP SuccessFactors, Oracle HCM Cloud, Microsoft Dynamics 365).

Едиными и самыми значимыми требования к современным HRMсоответствие принципам HR-менеджмента; системам являются: (локально удалённо); удобный многопользовательский доступ ИЛИ графический интерфейс; работа В режиме реального времени; разграничение прав доступа; а также защита персональных данных в соответствии с законодательством РФ. Современные HRM-системы освобождают HR-специалистов OT рутинной работы, позволяя сосредоточиться на стратегических задачах, например, разработке и внедрении корпоративной культуры, предотвращении конфликтов повышении вовлечённости персонала.

Заключение. Таким образом, в результате проведенной работы определено, что информационные технологии кардинально изменили подход к управлению трудовыми ресурсами: от бумажного документооборота происходит переход к цифровым, прозрачным и аналитически ориентированным системам. Автоматизация позволяет повысить точность, скорость и качество кадровых процессов, снизить текучесть и укрепить лояльность сотрудников. Внедрение HRM-систем становится стратегической необходимостью для любой организации, стремящейся к устойчивому развитию в условиях цифровой экономики.

- 1. Красникова, Я. В. Цифровые технологии в управлении персоналом / Я. В. Красникова // Гуманитарный научный журнал. -2020. № 1. С. 77–83.
- 2. Моисеева, А. А. Условия и последствия диджитализации современного общества: социально-экономический анализ / А. А. Моисеева // Вестник Томского государственного университета. Философия. Социология. Политология. 2017. № 39. С. 216—236.
- 3. Мусина, Д. Р. Цифровизация регионов: методы оценки / Д. Р. Мусина, А. В. Янгиров, С.И. Насырова // Вестник УГНТУ. Наука, образование, экономика. Серия: Экономика. 2020. № 1 (31). С. 32–38.
- 4. Фролова, П. И. Управление развитием персонала на основе профессиональных стандартов / П. И. Фролова // Ученые записки ИУО РАО. -2016. -№ 3(59). -ℂ. 165–168.

# РАЗРАБОТКА ГРАФОВОЙ МОДЕЛИ ПОЛЬЗОВАТЕЛЬСКИХ СЕССИЙ НА ОСНОВЕ СИСТЕМЫ МЕТРИК ВНИМАНИЯ ДЛЯ ПОВЕДЕНЧЕСКОГО АНАЛИЗА

#### Фурик В.А.,

**Жмыхова Т.В.,** канд. физ.-мат. наук, доц.

«Донбасская национальная академия строительства и архитектуры» — филиал ФГБОУ ВО «Национальный исследовательский Московский государственный строительный университет», г. Макеевка, ДНР, РФ furik.v.a-asp-mmch@donnasa.ru, t.v.zhmykhova@donnasa.ru

**Ключевые слова**: экономика внимания, метрики внимания, пользовательские сессии, графовые модели, поведенческий анализ, вебаналитика, персонализация.

Введение. Современный цифровой ландшафт характеризуется обостренной конкуренцией за ограниченный ресурс пользовательского внимания. В этих условиях традиционные метрики веб-аналитики, такие как время на сайте и количество просмотров, демонстрируют фундаментальную неадекватность, так как не способны различать пассивное и активное внимание, игнорируют когнитивные аспекты вовлечения и не учитывают контекстуальные факторы взаимодействия [6]. Это создает насущную потребность в разработке методов измерения и анализа внимания, выходящих за рамки традиционных подходов. В работе предлагается инновационное решение данной проблемы через разработку комплексной системы метрик внимания и их интеграцию в графовую модель поведения для последующей глубокой поведенческой сегментации аудитории [1, 2].

Материалы и методы. Теоретической основой исследования выступила экономика внимания – междисциплинарная область, изучающая дефицитный ресурс [3, работе проводился внимание как 4]. В анализ подходов М. Голдхабера, акцентирующего сравнительный дефицитность внимания, и Г. Франка, предлагающего механизмы его количественной оценки и капитализации [3, 4, 5]. Этот анализ обосновывает необходимость перехода ОТ количественных к качественноориентированным метрикам.

Для преодоления ограничений традиционных подходов была разработана система из семи взаимодополняющих метрик, комплексно оценивающих различные аспекты пользовательского внимания [6, 7]:

- Временной аспект измеряется через общее время взаимодействия (Dwell Time - DT) и время полной видимости блока (Block Viewable 100% - BV100).

- Поведенческий аспект оценивается через интенсивность активных взаимодействий (Interaction Score IS) и интенциональное замедление навигации (Slow Scroll Rate SSR).
- Когнитивный аспект фиксируется через периоды устойчивой фокусировки (Attention View AV) и динамику изменения видимости контента (Viewability V).
- Мотивационный аспект измеряется через долю повторных просмотров контента (Double View DV).

На основе этих метрик построена ориентированная взвешенная графовая модель поведения пользователей. В данной модели вершины соответствуют блокам контента, а ребра отражают переходы между ними. Для расчета весов ребер использована формула, интегрирующая качество внимания на исходном и целевом блоке, а также частоту переходов:

$$w(vi, vj) = \alpha \cdot AS(v_i) + \beta \cdot AS(v_j) + \gamma \cdot log(1 + N(v_iv_j)), \qquad (1)$$

где **AS**(AttentionScore) — композитный показатель, агрегирующий все метрики с весовыми коэффициентами, определенными методом главных компонент.

Результаты исследования. Экспериментальная апробация предложенной методологии данных была проведена на пользовательских сессий сайта застройщика. Основное внимание уделялось между шестью ключевыми блоками контента: переходов «Распродажа», «Список проектов», «Преимущества ЖК», «Программы покупки», «Спецпредложения для инвестиций» и «Предложения для семей».

В результате был построен взвешенный ориентированный граф структурные переходов, который наглядно выявил пользовательского поведения. Анализ матрицы переходов показал наличие устойчивых связей между определенными блоками. Например, были зафиксированы целенаправленные переходы из блока «Распродажа» в блок «Программы покупки» (вес 0.78) и в блок «Спецпредложения для инвестиций» (вес 0.91), а также интенсивное взаимодействие между блоками «Список проектов» и «Программы покупки» (вес 0.95). Это свидетельствует о том, что предложенная графовая модель и лежащая в ее основе система метрик успешно фиксируют не только факт перехода, но и качественную характеристику, обусловленную глубиной его пользовательского внимания.

Заключение. Проведенное исследование подтвердило эффективность разработанного подхода к моделированию пользовательских сессий. Комплексная система метрик внимания позволяет преодолеть ключевые ограничения традиционной аналитики и обеспечивает многомерную оценку вовлеченности.

Построенная графовая модель успешно интегрирует количественные и качественные показатели внимания со структурными паттернами навигации, формируя целостное представление о пользовательском поведении.

## **В** дальнейшем планируется проведение исследований в следующих направлениях:

- 1. Проведение кластеризации построенного графа с использованием модифицированного метода спектральной кластеризации для выявления устойчивых поведенческих сегментов аудитории.
- 2. Верификация качества кластеризации через анализ корреляции выделенных кластеров с ключевыми бизнес-показателями, такими как конверсия.
- 3. Разработка на основе полученных сегментов систем динамической персонализации пользовательского опыта и целевых маркетинговых коммуникаций.
- 4. Адаптация предложенной методологии для анализа кроссплатформенного поведения и мобильных приложений.

Полученные результаты открывают новые возможности для создания адаптивных систем, способных динамически подстраиваться под изменяющиеся паттерны пользовательского поведения в цифровой среде.

- 1. Голдыбаев, Д. И. Эволюция цифрового маркетинга и его роли в управлении бизнесом / Д. И. Голдыбаев // Практический маркетинг. 2023. № 4.
- 2. Есболова, А. Н. Алгоритмический маркетинг и персонализация клиентского опыта / А. Н. Есболова // Journal «Professional Bulletin. Economy and Management». 2025. № 2.
- 3. Goldhaber M. The Attention Economy and the Net // First Monday. 1997. Vol. 2, No.4.
- 4. Franck G. The Economy of Attention // Journal of Sociology. 2019. Vol. 55, No. 1. P. 8–19.
- 5. Franck G. Mental Capitalism. Basel, Boston & Berlin: Birkhäuser, 2005.
- 6. IAB. Attention Measurement Explainer: Data Signal Approaches // IAB. URL: <u>iab.com/attention</u> (дата обращения: 10.04.2025).
- 7. Что скрывает CTR: взгляд сквозь метрики внимания на примере сегмента недвижимости. Исследование Interpool в партнёрстве с AmberData // inpool.ru. URL: https://inpool.ru/Презентация\_Исследование\_Interpool\_Что\_скрывает\_CTR.pdf (дата обращения: 18.08.2025).

#### СОВРЕМЕННЫЕ МОДЕЛИ СОЗДАНИЯ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

**Харитонов И.А.**<sup>1</sup>, ORCID 0009-0001-9341-6659, **Харитонова И.В.**<sup>2</sup>, канд. пед. наук, доц., ORCID 0009-0008-0878-1557 <sup>1</sup>ΦΓБОУ ВО «Вятский Государственный Университет», г. Киров, РФ <sup>2</sup>Филиал ФГАОУ ВО «Северный (Арктический) федеральный университет имени М.В. Ломоносова», г. Коряжма, Архангельская обл., РФ *stud180064@yyatsu.ru, ivh1972@yandex.ru* 

**Аннотация.** В статье рассматриваются аспекты, связанные с разработкой программного обеспечения. Подробно описаны традиционные и современные модели разработки с указанием их преимуществ, недостатков и сфер применения. Особое внимание уделено необходимости гибкости, эффективному управлению ресурсами и взаимодействию с заказчиком для повышения качества конечного продукта.

**Введение**. В последние десятилетия наблюдается тенденция развития программного обеспечения. Разработка программного продукта всегда требовала глубоких знаний в сфере программирования, что предъявляет особые требования к процессу разработки, усложняя его и делая весьма трудоемким. Именно поэтому создаются методы для упрощения создания программного обеспечения.

**Целью** статьи является анализ существующих моделей разработки программного обеспечения (ПО), а также выявление их особенностей, преимуществ и недостатков для выбора оптимального подхода в зависимости от специфики проекта.

Основная часть. Рассмотрим существующие модели разработки ПО. В модели Waterfall (Водопад) разработка осуществляется поэтапно.

Каждый следующий этап начинается только после завершения предыдущего [1]. Является наиболее быстрой и простой моделью из-за её жесткости, которая пользуется с 1970-х годов.

Эту модель используют при зафиксированной стоимости и понятных требований. Важно, чтобы программисты обладали необходимой квалификацией, а сам проект был относительно небольшим.

Waterfall подходит для разработки относительно небольших проектов в отраслях, где сформирована обширная база документации и определена ясная и чёткая цель.

**V-образная** модель унаследовала структуру Waterfall, однако параллельно процессу создания ПО проходит тестирование. Модель появилась в 1980-х годах [3]. Она направлена на тщательную проверку и тестирование с самого начала создания продукта.

Преимуществом становится сведение ошибок при разработке к минимуму. Заказчик может видеть результат. Недостатком является высокая стоимость исправления ошибки, допущенной на предыдущих этапах.

В Iterative Model процесс создания разделяется на сборки. В начале заказчик не обязан понимать, какой продукт хочет получить в итоге. Вместо этого, создание начинается с реализации некоторого функционала, который будет затем дополняться новым функционалом [2].

Преимуществом является возможность дорабатывать проект по мере необходимости, а также можно вовремя отказаться от дальнейшей разработки. Недостатком является отсутствие фиксированного бюджета и сроков.

Модель можно использовать при создании больших продуктов, где конечная цель четко определена, но детали реализации могут со временем измениться. На каждом этапе есть возможность дополнить проект.

**Agile** — это итеративный подход, в котором важны гибкость и обратная связь. В основе такого типа регулярно повторяющиеся собрания, где участники обсуждают проделанную работу и распределяют обязанности [1]. После каждой итерации заказчик может наблюдать результат и понимать, удовлетворяет он его или нет. Одним из недостатков является необходимость команды с опытом совместной работы.

Модель подходит для проектов, где постоянно меняются потребности пользователей и есть команды с высоким уровнем коммуникации. Изменения реализуются за меньшую сумму и в отличии водопада, в Agile достаточно лишь небольшого планирования.

В **Spiral Model**, заказчик и команда разработчиков акцентируют внимание на анализ рисков проекта, и выполняют его итерациями [2]. Каждая стадия основана на предыдущей, а в конце каждого витка определяется целесообразность продолжать проект. Внутри каждой итерации реализуется определенная модель разработки. Недостатком является продолжительность разработки.

Обобщая всё вышесказанное, можно составить таблицу моделей разработки, которая поможет будущим разработчикам определить, какую именно модель им выбрать.

Таким образом, каждый заказчик или разработчик на основе приведённой ниже таблицы может самостоятельно определить, каким методом разработки ему пользоваться. С каждым годом открывают новые технологии, которые в будущем смогут помочь создать еще больше методологий разработки, а значит, появится еще больше проектов разной направленности.

Методы, которые существуют сейчас существенно облегчают разработку программного обеспечения. Благодаря им заказчики экономят свои деньги, а разработчики точно знают, что от них требуется.

#### Модели разработки ПО

| Модель             | Бюджет  | Планирование                |                        | Объем     | Участие                     | Тестирова-                  |
|--------------------|---------|-----------------------------|------------------------|-----------|-----------------------------|-----------------------------|
|                    |         | Определе-<br>ние плана      | Скорость<br>разработки | - проекта | заказчика                   | ние                         |
| Waterfall<br>Model | Любой   | В начале                    | Средняя                | Малый     | В начале и в конце          | В конце                     |
| V-образная модель  | Высокий | Вначале                     | Средняя                | Малый     | После<br>каждого<br>этапа   | На каждом<br>этапе          |
| Iterative<br>Model | Любой   | После каждой новой итерации | Очень<br>высокая       | Средний   | После<br>каждой<br>итерации | На каждой<br>итерации       |
| Agile Model        | Высокий | В любой<br>момент           | Очень<br>высокая       | Большой   | Всё время                   | Всё время                   |
| Spiral Model       | Высокий | После каждой итерации       | Низкая                 | Средний   | После каждой итерации       | После<br>каждой<br>итерации |

- 1. Управление разработкой программного обеспечения: организация процесса, модели, инструменты // SIMPLEONE URL: https://simpleone.ru/blog/proczess-razrabotki-programmnogo-obespecheniya (дата обращения: 01.09.2025).
- 2. Ещё раз про семь основных методологий разработки // Хабр URL: https://habr.com/ru/companies/edison/articles/269789/ (дата обращения: 01.09.2025).
- 3. Модели и методологии разработки ПО // GeekBrains URL: https://gb.ru/blog/modeli-i-metodologii-razrabotki-po/ (дата обращения: 01.09.2025).
- 4. 8 лучших методологий разработки ПО в 2025 году // PurrWeb URL: https://www.purrweb.com/ru/blog/metodologii-dlya-razrabotki-po/ (дата обращения: 01.09.2025).
- 5. Этапы жизненного цикла разработки ПО // ICStudio URL: https://icstudio.online/ru/post/etapy-zhiznennogo-cikla-razrabotki-po (дата обращения: 01.09.2025).

# РАЗРАБОТКА СИСТЕМЫ ПРОГНОЗИРОВАНИЯ ФУТБОЛЬНЫХ МАТЧЕЙ НА ОСНОВЕ МНОГОКЛАССОВОЙ ЛОГИСТИЧЕСКОЙ РЕГРЕССИИ

**Шевцов Д.В.,** д-р техн. наук, доц., ORCID 0009-0009-3874-6223, **Трубников И.Д.,** ORCID 0009-0006-2511-1462 ФГБОУ ВО «Донецкий государственный университет», г. Донецк, РФ Loganplay580@mail.ru

мире Ввеление. В современном прогнозирование футбольных матчей стало важным направлением спортивной аналитики. Футбол, являясь самым популярным видом спорта на планете, привлекает болельщиков и спортивных внимание не только клубов, исследователей, аналитиков, компаний, занимающихся обработкой данных. Миллионы матчей, сыгранных за десятилетия, создают огромный массив статистической информации, который может служить основой для разработки интеллектуальных систем прогнозирования. В этих условиях актуальной задачей становится создание моделей, которые способны учитывать широкий спектр факторов и обеспечивать достоверные результаты.

Рост интереса к статистическим методам и методам машинного обучения предъявляет повышенные требования к прогнозным моделям. От них ожидают сочетания высокой точности предсказаний, вычислительной эффективности и интерпретируемости получаемых результатов. На практике это означает, что модель должна не только выдавать прогноз, но и позволять объяснить, какие факторы оказали наибольшее влияние на итоговое решение. Такой подход востребован в спортивной аналитике, где важна не только вероятность исхода, но и понимание причин, стоящих за прогнозом.

Существующие методы прогнозирования футбольных матчей можно разделить на несколько категорий. Первая — это простые статистические и рейтинговые модели. Среди них наиболее известен метод Эло, который широко применяется в шахматах и адаптирован для спортивных соревнований. Он основан на обновлении рейтингов команд после каждого матча в зависимости от ожидаемого результата. Такие методы просты в реализации, однако не позволяют учитывать множество скрытых факторов, например текущую форму команды или специфику турнира.

Вторая категория методов связана с применением моделей машинного обучения. В последние годы активно используются нейронные сети, способные выявлять сложные нелинейные зависимости в данных. Однако они предъявляют высокие требования к вычислительным ресурсам

и большим объёмам данных для обучения, а также страдают от недостаточной интерпретируемости. Это делает их менее удобными для применения в практических задачах, где важна прозрачность модели и возможность анализа влияния отдельных факторов.

На этом фоне особый интерес представляет использование многоклассовой логистической регрессии. Данный метод сочетает в себе достоинства статистических и современных машинных подходов. С одной стороны, он достаточно прост с точки зрения вычислений и обладает высокой интерпретируемостью; с другой — позволяет работать с вероятностями и учитывать сразу несколько исходов. В отличие от бинарной логистической регрессии, где прогнозируется один из двух вариантов (например, победа или поражение), многоклассовый вариант решает задачу классификации с тремя исходами: победа первой команды, ничья и победа второй команды.

**Цель работы** — разработать и реализовать систему прогнозирования исходов футбольных матчей на основе многоклассовой логистической регрессии с последующей оценкой точности и сравнением с альтернативными методами.

Основная часть. В рамках исследования рассматриваются ключевые этапы построения системы прогнозирования исходов футбольных матчей. Особое внимание уделяется выбору метода, формированию набора данных и разработке алгоритма. Методологической основой служит многоклассовая логистическая регрессия, которая позволяет учитывать все три возможных исхода матча и обеспечивает интерпретируемость результатов.

Для достижения цели поставлены следующие задачи:

- 1. Изучить современные методы прогнозирования и выявить их ограничения.
- 2. Обосновать выбор многоклассовой логистической регрессии как метода, обеспечивающего интерпретируемость и прогнозирование трёх исходов.
- 3. Определить значимые параметры модели (форма команд, фактор домашнего поля, история личных встреч и др.) и подготовить набор данных.
- 4. Разработать и реализовать алгоритм многоклассовой логистической регрессии.
- 5. Провести экспериментальные исследования на реальных данных и выполнить сравнение с базовыми моделями, включая рейтинговые подходы.

Методологической основой исследования является многоклассовая логистическая регрессия с использованием Softmax-функции, позволяющей получать вероятностное распределение по трём исходам. Оценивание параметров модели предполагается выполнять методом максимального правдоподобия с функцией потерь на основе перекрёстной энтропии. Такой

подход обеспечивает интерпретируемость влияния каждого признака на прогноз и устойчивость к шуму в данных.

Гипотеза исследования состоит в том, что многоклассовая логистическая регрессия, благодаря учёту ничейных исходов и интеграции значимых факторов, позволит получить сопоставимые или лучшие результаты по сравнению с простыми рейтинговыми методами, сохранив при этом прозрачность интерпретации и умеренные требования к объёму данных и вычислительным ресурсам.

Заключение. Проведённое исследование показывает, что многоклассовая логистическая регрессия является перспективным инструментом для решения задачи прогнозирования исходов футбольных матчей. Данный метод сочетает интерпретируемость, возможность работы с вероятностями и учёт всех трёх исходов (победа первой команды, ничья, победа второй команды). Это делает его удобным как для практического применения в спортивной аналитике, так и для дальнейших научных исследований.

Практическая значимость работы заключается в том, что разработанная модель может быть использована для аналитики матчей, поддержки принятия решений тренерскими штабами и спортивными клубами, а также интеграции в образовательные и исследовательские проекты. Кроме того, она может служить основой для создания гибридных систем прогнозирования, сочетающих разные методы машинного обучения и статистики.

- 1. Управление цифровой информацией в физической культуре и спорте: учебнометодическое пособие / составители Ж. И. Бушева [и др.]. Сургут: СурГУ, 2024. 51 с. Текст: электронный.
- 2. Хурамшина, А. З. Социология физической культуры и спорта: учебное пособие / А. З. Хурамшина, И. Г. Хурамшин. Казань: Поволжский ГУФКСиТ, 2020. 141 с. Текст: электронный.
- 3. Потапова, К. А. Основы машинного обучения на языке Питон: учебно-методическое пособие / К. А. Потапова. Москва: РТУ МИРЭА, 2025. 66 с. ISBN 978-5-7339-2440-3. Текст: электронный.
- 4. Ризаев, И. С. Интеллектуальный анализ данных: учебное пособие / И. С. Ризаев, Э. Г. Тахавова. Казань: КНИТУ-КАИ, 2020. 116 с. ISBN 978-5-7579-2496-0. Текст: электронный.
- 5. Митина, О. А. Технологии и инструментарий машинного обучения: учебное пособие / О. А. Митина, В. В. Жаров. Москва: РТУ МИРЭА, 2023. 203 с. ISBN 978-5-7339-1758-0. Текст: электронный.

#### ЯЗЫК ОПИСАНИЯ ДАННЫХ И ЯЗЫК ОПИСАНИЯ ЗАДАЧИ

#### *Яр-Мухамедов И.Г.*, доц.

Институт машиноведения, автоматики и геомеханики НАН Кыргызской Республики, г. Бишкек, Кыргызская Республика *aldar@email.su* 

Введение. Языки моделирования и программирования предметной ориентации [1] являются большей частью императивными, процедурными, предназначенными для описания алгоритмов поиска решений прикладных их рассматривают как малые специализированные алгоритмические языки [2]. Это значит, что они выступают как средства программирования, фактически автоматизации затрагивая предшествующие этапы проектирования, непосредственно примыкающие к области. Для преодоления упомянутого предметной недостатка предлагается разделить собственно предметный и методо-ориентированный аспекты специализированных языков моделирования DSL (Domain-Specific Languages).

**Цель**. Сформулировать особенности языков описания: а) предметной области; б) задачи, подлежащей решению. Показать их место в технологическом процессе проектирования. Наметить возможные варианты компьютерной реализации.

Основная часть. Одной из самых общих форм представления объекта некоторой предметной области является системное представление [3]. рассматривается как совокупность элементов, возможно, организованных различных уровней, определяемых подсистемы межэлементными и межподсистемными связями, которые и определяют объект как целостность, обладающую свойствами, не присущими отдельным элементам и подсистемам. Исходя из положений общей теории охарактеризовать объект, необходимо соответствующий язык, чтобы описать следующее.

- 1. Элементы и их свойства.
- 2. Связи элементов.
- 3. Подсистемы и их свойства.
- 4. Связи подсистем.
- 5. Объект в целом и его свойства.
- 6. Связи объекта с внешней средой.
- 7. Интересы субъекта, связанные с данным объектом.

Модель объекта, даже если он динамический, т.е. должен рассматриваться как изменяющийся во времени, может быть описана и действительно описывается с помощью декларативного языка [4].

Предметно ориентированный язык для описания объекта фактически языком описания данных, характеризующих объект перечисленных выше аспектах. В ЭТОМ его отличие языков программирования, для которых в качестве объекта выступает процесс обработки данных для поиска требуемого решения.

В противоположность языку описания данных (ЯОД) язык описания задачи (ЯОЗ) предназначен для отображения ее компонент [5].

- 1. Что дано: исходные данные.
- 2. Что требуется найти: выходные данные.
- 3. Как их исходных данных получить искомый результат: метод (алгоритм) или ссылка на него.

Отметим, что при автоматизации существенное значение приобретают аспекты содержания и форм представления каждой из компонент задачи, в особенности исходных и выходных данных. Это обусловлено различиями, прежде всего, в системах понятий специалистов предметной области и тех, кто занимается автоматизацией их труда.

Относительно третьей компоненты задачи мы указали, что возможно указание на метод или алгоритм. В настоящее время имеется значительное количество библиотек с хорошо отлаженными типовыми алгоритмами и программами, а также самостоятельных пакетов прикладных программ (ППП) с ориентацией на методы решения различных классов задач. По этой причине имеет смысл использовать именно методо-ориентированные ППП, а подробно описывать методы решения только для задач прямого счета (инженерные расчеты) либо задач, для которых отсутствуют необходимые математические и программные средства.

примера рассмотрим задачу кластерного использованием критерия к-средних. Исходные данные имеют простейшую форму представления в виде прямоугольной таблицы типа "объектсвойство" параметров (размерности, необходимость [6] И ряда стандартизации данных, используемая мера сходства или расстояния и т.п.). Выходные данные могут быть описаны на языке GNU MathProg [7] как задача линейного программирования с булевыми переменными.

В языке имеются средства описания целевой функции, функциональных и параметрических ограничений, дополнительных параметров.

Компьютерная реализация транслятора с ЯОП на ЯОЗ возможна в двух вариантах: как компилятора, так и интерпретатора. Первый вариант предполагает обязательное участие программиста в процессе решения задачи. Результат трансляции требуется компилировать с помощью компилятора с языка программирования общего назначения либо специализированного математического пакета. Второй вариант предпочтительнее, так как формулирование и решение задачи могут

выполняться непосредственно конечным пользователем - специалистом предметной области.

Для решения задачи линейного программирования имеется большое количество различных средств. Может использоваться, например, специальная утилита (stand-alone LP/MIP solver).

Поскольку выходная информация любого методо-ориентированного ППП выражается в терминах математической задачи, то крайне желательно наряду с уже рассмотренным транслятором разработать и транслятор с языка математического пакета на язык предметной области, который будет преобразовывать формальные значения искомых переменных в показатели и документы, необходимые профессионалам.

Заключение. На основе общесистемных представлений и типовой структуры функциональной задачи сформулированы особенности предметно-ориентированных языков: языка описания данных и языка описания задачи. Такое разделение позволяет дифференцировать работы специалистов различного профиля и повысить степень автоматизации исследований и разработок. Показаны также возможности компьютерной реализации транслятора декларативного языка.

- 1. M. Mernik, J. Heering, A.M. Sloane. When and how to develop domain-specific languages. REPORT SoftwareENgineering-E0517 DECEMBER 2005. 44 p.
- 2. Jon Bentley. Programming Pearls: Little Languages. Communications of the ACM. August 1986. Vol. 29, No. 8. pp. 711–721.
- 3. Ludwig von Bertalanffy. Seneral System Teory: Foundations, Development, Applications. New York: George Braziller, 1968. 302 p.
- 4. Jay W. Forrester. Industrial Dynamics. Cambridge, Massachusetts: M.I.T. Press, 1961. 488 p. URL: https://archive.org/details/industrialdynami0000forr/page/n3/mode/2up (Дата обращения 09.25.2025).
- 5. J. Polya. How to Solve It: a new aspect of mathematical method. Priceton University Press. 1945, 2004. 253 p. URL: https://www.hlevkin.com/hlevkin/90MathPhysBioBooks/Math/Polya/George\_Polya\_How\_To\_Solve\_It\_.pdf (Дата обращения 09.25.2025).
- 6. R. B. Cattell. The description of personality: basic traits resolved into clusters. *The Journal of Abnormal and Social Psychology*, 38(4), 1943. р. 476–506. URL: <a href="https://doi.org/10.1037/h0054116">https://doi.org/10.1037/h0054116</a> (Дата обращения 09.25.2025).
- 7. Modeling Language GNU MathProg. Language Reference, for GLPK Version 4.58 (DRAFT, February 2016). URL: https://gusek.sourceforge.net/gmpl.pdf (Дата обращения 09.25.2025).

### СОДЕРЖАНИЕ

## Механика твердого тела

| Гордеев Г.Г. Способы составления уравнений движения машин с электроприводом                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Зыза А.В. Алгебраические инвариантные соотношения в новых решениях уравнений Кирхгофа-Пуассона                                                                                                                |
| Коносевич Б.И., Коносевич Ю.Б Двусторонние мажоранты неограниченных фазовых траекторий бестоковой модели синхронного электромотора                                                                            |
| Корчевский А.Н., Гордеев Г.Г., Щепин Н.Н. Составление уравнений движения вибрационного пневматического сепаратора и исследование влияния его параметров на обогащение полезных ископаемых                     |
| Мазнев А.В. Об условиях существования регулярных прецессий гиростата в главной системе координат                                                                                                              |
| Тырловой С.И., Костенко А.В., Шевченко Д.С. Применение уравнения Лагранжа 2-го рода для моделирования работы механического регулятора распределительного ТНВД высокооборотного дизеля                         |
| <i>Щепин Н.Н.</i> Исследование конечномерной модели замкнутого упругого стержня                                                                                                                               |
| Механика деформируемого твердого тела                                                                                                                                                                         |
| Авдюшина Е.В. Влияние наклона разгрузочных щелей на напряженное состояние горного массива с горизонтальной выработкой сводчатого сечения                                                                      |
| Бондаренко Н.С. Анализ компонент безмоментного напряжённого состояния ортотропных пластин при локальных силовых воздействиях, распределённых по площади эллипса, на базе {1,0}-аппроксимации                  |
| Глухов А.А., Сторожев В.И., Фоменко М.В. Локализованные сдвиговые волны в слое с симметричной по толщине двухфакторной неоднородностью между функционально-градиентными анизотропными полупространствами      |
| Глушанков Е.С. Влияние трещин на концентрацию температурных напряжений в пластинке из пьезоматериалов                                                                                                         |
| Глущенко А.В., Пачева М.Н., Сторожев В.И., Сторожев С.В. Окружные изгибные волны в кольцевой пластине на двухпараметрическом упругом основании                                                                |
| Гольцев А.С., Чехов В.Н. Компьютерная модель сосредоточенного воздействия поперечной силы на ортотропные пластины                                                                                             |
| Дзундза А.И., Моисеенко В.А., Моисеенко И.А. Базисные решения в задаче о распространении неосесимметричных нормальных волн в протяженных изотропных функционально-градиентных цилиндрах кольцевого сечения 4. |
| Евтихов Д.О., Савостьянова И.Л. Кручение упругопластического Z-образного сечения стержня прокатного профиля, армированного упругими волокнами                                                                 |

| Uлюхин $A.A.$ , $U$                                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Калоеров С.А., Ермаков О.Э., Мироненко А.Б. Решение задачи электроупругости об изгибе тонкой плиты с упругими включениями                                                                                                  |
| Калоеров С.А., Полянский М.А. Исследование электроупругого состояния полуплоскости с отверстиями и трещинами                                                                                                               |
| Калоеров С.А., Сероштанов А.В. Мироненко А.Б. Решение задачи об электроупругом изгибе полосы с отверстиями, трещинами и выемами                                                                                            |
| Карасев Д.С., Номбре С.Б., Сторожев С.В., Фоменко М.В. Возбуждение сдвиговых электроупругих волн в симметрично-неоднородном по толщине функционально-градиентном пьезокерамическом полуслое                                |
| Малютина Т.П., Павлыш В.Н., Полянский Д.Д., Сторожев С.В. Нечеткомножественная оценка уровней разбросов контактных напряжений в модели сборки составной цилиндрической конструкции методом горячей посадки                 |
| Мельничук Н.Ю. Некоторые обобщения результатов применения многофакторных моделей радиальной неоднородности в исследованиях волновых процессов в цилиндрических неоднородных структурах                                     |
| Сторожев В.И. Интегрирование уравнений распространения локализованных продольно-сдвиговых электроупругих волн в полупространстве функционально-градиентной пьезокерамики с многофакторной приповерхностной неоднородностью |
| Сторожев В.И., Сторожев С.В., Чан Ба Ле Хоанг. Учет факторов параметрической неопределенности в модели деформации стенки сосуда при изменении давления на его внутренней и внешней поверхностях                            |
| Математический анализ и дифференциальные уравнения                                                                                                                                                                         |
| Будыка В.С. Условие максимальности индексов дефекта оператора Шрёдингера с матричными точечными взаимодействиями                                                                                                           |
| Волчков А.В., Руссиян С.А. О носителях функций с некоторыми интегральными условиями                                                                                                                                        |
| Волчков В.В., Мисакордзиян А.О. Проблемы инъективности для интегральных преобразований, связанных с шаровыми средними                                                                                                      |
| Волчков В.В., Пилипенко И.С. Гомеоморфизм плоских областей с условием сохранения меры                                                                                                                                      |
| Волчков В.В., Сероштанова К.В. Ослабление интегрального условия в теореме о полном дифференциале                                                                                                                           |
| Волчкова Н.П., Волчков Вит.В., Скляр Д.В. Теорема о среднем для собственных функций оператора Коха на группе $\mathbf{H}^{\mathbf{n}}_{\mathbf{red}}$                                                                      |
| Волчкова Н.П., Волчков Вит.В., Хиценко М.В. Задача типа Радона-Помпейю на пилиндре                                                                                                                                         |

| Заставный В.П. Рекуррентная формула для первообразных ядер 1-симметричных многомерных характеристических функций                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Krasnoschekikh G.V., Volchkov Vit.V. Uniqueness theorems for classes of functions with zero spherical means with respect to the Bessel convolution                   |
| Пиманский Д.В. О слабой коэрцитивности системы минимальных дифференциальных операторов в шкале пространств Соболева                                                  |
| Манов А.Д. О положительности преобразования Фурье-Бесселя некоторых функций                                                                                          |
| Машаров П.А., Власенко И.С. О функциях с нулевыми интегралами по множествам, конгруэнтным данному равнобедренному тупоугольному треугольнику                         |
| <i>Оридорога Л.Л., Агибалова А.В.</i> О положительной определённости матриц Шенберга.                                                                                |
| Павлов А.Л. О существовании слабых обобщенных решений задачи коши для уравнений соболевского типа                                                                    |
| Информационно-документационное обеспечение управления                                                                                                                |
| Балдынюк А.И. Информационное обеспечение управления инновационностью предприятий пищевой промышленности                                                              |
| Гайдарь Е.В. Ключевые аспекты управления финансами предприятий в условиях логистизации экономики                                                                     |
| Гизатулин А. М. Управление информационной безопасностью при цифровизации архивов                                                                                     |
| Коробейникова К.В. Трансформация сферы управления проектами с помощью цифровых технологий                                                                            |
| Мащенко Н.Е. Документирование в процессе принятия решений: системный подход                                                                                          |
| <i>Митрохина Е.А.</i> Современные аспекты управления знаниями в условиях цифровой трансформации                                                                      |
| Нестеров О.Ю. Влияние информационно-коммуникационных технологий на процесс информационного взаимодействия ОМСУ и населения. Принцип «клиентоцентричного государства» |
| Овчаренко А.С. Особенности информационно-документационного обеспечения управления организацией в современных цифровых реалиях                                        |
| Пономаренко Н. Ш. Защита информационных ресурсов в эпоху новых технологий: угрозы и защита                                                                           |
| Харакиоз А.В. Источниковедение: раскрываем тайны прошлого для лучшего будущего                                                                                       |
| <i>Целик М.С.</i> Модель функционирования центра дистанционного образования в университетах с особым статусом                                                        |

# Прикладная математика, прикладная информатика и теория систем управления

| Агапов Н.А., Авдюшина Е.В. Анализ данных о погодных условиях с использованием библиотек Python для прогнозирования изменений климата                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Акимов С.С., Трипкош В.А., Архапчева М.В. Вопросы идентификации законов распределения                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Акиньшина В.А., Топорков Н.М., Акиньшин А.В. Применение методов искусственного интеллекта в прогнозировании успешности курсантов государственной авиации                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Ан С.И., Третьякова Н.В. Прикладные задачи математики в военном деле в эпоху цифровой трансформации                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Андреев И.А., Блохин С.В. Разработка автоматизированной подсистемы формирования расписания факультета                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Архапчева М.В., Трипкош В.А., Акимов С.С. Разработка гибридной модели машинного обучения для прогнозирования аварийных ситуаций, вызванных утечками газа                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Афанасьева Н.О. Оптимизация ввода в работу кустов газовых скважин с учетом технологических ограничений методами линейного программирования средствами электронных таблиц                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $E_{A}$ $E_{$ |
| <i>Блохин С.В., Манха О.А.</i> Анализ уязвимостей в коде: методы и метрики оценки безопасности                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Бойко Е.А. Математические модели систем автоматического регулирования методом необратимых реологических преобразований                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Бойко Н.З., Стенцель И.И. Научные и методологические аспекты моделирования объектов управления методом необратимых реологических преобразований                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Володин Н.А. Об идентифицируемости функции в параболическом уравнении                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Глазков Ю.Е., Глазков В.Ю., Букина М.А. Программа реализации алгоритма<br>Хабермана (по распределению ресурсов)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Горбачева О.И., Григорьев С.В. Цифровые технологии как средство организации самостоятельной работы студентов в процессе обучения                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Григорьев С.В., Резниченко А.М. Логистическая регрессия как метод бинарной классификации                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <i>Григорьева Е.Г., Курко Д.И.</i> Сравнительный анализ некоторых алгоритмов из теории расписаний                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Давыдовская В.В., Невмержицкий С.Н., Беспалько З.А. Реализация межпредметных связей информатики и физики                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Дорофеева Ю.А., Белов Ю.В. Моделирование динамики изменения осадка в                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| Дубровина Е.А., Шевцов Д.В. Разработка метода сегментации 3D-моделей на основе графовых нейронных сетей и алгоритмов кластеризации                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Дяченко А.С. Влияние 6G-связи на развитие облачных и edge-сервисов                                                                                                                                |
| Захаров В.А., Руссова Н.В. Численное моделирование процесса нестационарной теплопроводности в бесконечной пластине с внутренними источниками тепла методом конечных элементов                     |
| Кожухов И.Б., Колесникова К.А. Строго хопфовы и кохопфовы полигоны над полугруппами                                                                                                               |
| Косенко Е.Е., Бойко М.В., Губанова А.А., Косенко О.В. Применение нечетких графовых моделей к задаче замены оборудования                                                                           |
| Куренков П.В., Филипченко А.С. Вызовы классической цифровой криптографии в условиях становления квантовых вычислительных систем                                                                   |
| <i>Ленников Р.В.</i> Математическое моделирование информационных процессов в сложных системах                                                                                                     |
| Макаренко И.Д., Платонов Ю.Г., Марчук А.Г. Проектирование распределенной системы управления данными с использованием паттерна CQRS для избирательного разграничения доступа                       |
| Малышев Ф.К., Золотая А.В. Об одном примере использования статистических методов анализа данных                                                                                                   |
| Мельников И.Д., Ананченко И.В. Программная реализация модуля расчета скоростей пара и свойств жидкости для верхней и нижней секций ректификационной колонны                                       |
| Настасенко С.А., Савотченко С.Е. Интеграция графовых структур в эмбеддинги векторных баз данных для повышения семантического поиска                                                               |
| <i>Неспирный В.Н., Шеремет Н.Н.</i> Реализация многослойных срезов в системе обработки статистической информации                                                                                  |
| Платонова Е.С., Рупенко Н.С. Подготовка к собеседованию в IT-компанию: комплексный подход                                                                                                         |
| Поликарпов Д.С., Косенко Е.Ю. Применение Q-функции для динамического управления конфигурацией логистических сетей                                                                                 |
| Полякова И.С. «Грушевидные» окружности. Матоперации получисел, нуля и единицы                                                                                                                     |
| Смирнова А.С., Цапкова Е.А. Принятие решений в условиях неопределенности                                                                                                                          |
| Суровцев Д.И., Шевцов Д.В. Разработка интерактивной обучающей программы по курсу «Теория графов: введение и прикладные задачи» с визуализацией и адаптивными методами решения задач теории графов |
| Сухан И.В., Штрейс И.В. Разработка генератора рекуррентных уравнений                                                                                                                              |
| Терлыч С.В., Полещук В.П., Карпинский В.Д., Несин Д.Ю. Воздействие вариаций магнитного поля Земли на показания магнитных компасов в полярных широтах                                              |
| Фадеев Р.Н., Посаженников А.А. Проектирование системы управления аллитивным произволством на базе 1С: ERP                                                                                         |

| Фролова Т.А.,  | Фролова П.И.           | Применение     | информационных                            | технологий | В   |
|----------------|------------------------|----------------|-------------------------------------------|------------|-----|
| управлени      | и трудовыми р          | есурсами       |                                           | •••••      | 251 |
|                | -                      |                | ой модели пользова<br>я поведенческого ан |            |     |
| 1              |                        | 1              | ные модели создани                        | 1 1        |     |
|                |                        |                | темы прогнозирова<br>тической регрессии   |            |     |
| Яр-Мухамедов І | $M.\Gamma$ . Язык опис | сания данных и | язык описания зада                        | ічи        | 263 |

#### НАУЧНОЕ ИЗДАНИЕ

#### ДОНЕЦКИЕ ЧТЕНИЯ – 2025: ОБРАЗОВАНИЕ, НАУКА, ИННОВАЦИИ, КУЛЬТУРА И ВЫЗОВЫ СОВРЕМЕННОСТИ

#### Материалы

X Международной научной конференции, посвященной 60-летию создания Донецкого научного центра, 5–7 ноября 2025 г., г. Донецк

### ТОМ 1 Механико-математические, компьютерные науки, управление

под общей редакцией проф. С.В. Беспаловой

 Дизайн обложки
 А.Ю. Гурина

 Технический редактор
 М.В. Фоменко

 Компьютерная верстка
 Н.Ю. Мельничук

#### Адрес оргкомитета:

ФГБОУ ВО «Донецкий государственный университет», ул. Университетская, 24, г. Донецк, 283001, ДНР, РФ. E-mail: science.prorector@donnu.ru

Подписано в печать 28.10.2025 г.
Формат 60×84/16. Бумага офисная.
Печать — цифровая. Усл.-печ. л. 15,8.
Тираж 50 экз. Заказ № 25окт121/1.
ФГБОУ ВО «Донецкий государственный университет» 283001, г. Донецк, ул. Университетская, 24.
Издательство ФГБОУ ВО «ДонГУ» 283001, г. Донецк, ул. Университетская, 22
Е-mail: donnu.izdatelstvo@mail.ru